Sustainable Resource Planning

Diagnosing challenges and setting priorities for sustainable water resource management under climate change


  • De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Global Environ. Chang. 45, 35–46 (2017).

    Article 

    Google Scholar
     

  • Reed, P. M. & Kasprzyk, J. Water resources management: The myth, the wicked, and the future. J. Water Res. Plan. Man. 135, 411–413 (2009).

    Article 

    Google Scholar
     

  • Reddy, V. R. & Syme, G. J. Social sciences and hydrology: An introduction. J. Hydrol. 518, 1–4 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Grafton, R. Q. et al. Global insights into water resources, climate change and governance. Nat. Clim. Change 3, 315–321 (2013).

    Article 
    ADS 

    Google Scholar
     

  • UNESCO & UN-Water. United Nations World Water Development Report 2020: Water and Climate Change. Paris, France: UNESCO; 2020. Report No.: ISBN: 978-92-3-100371-4.

  • Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl. Acad. Sci. USA 109, 5609–5614 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, S. G. et al. A multiscale approach to balance trade-offs among dam infrastructure, river restoration, and cost. Proc. Natl. Acad. Sci. USA 115, 12069–12074 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auerswald, K., Moyle, P., Seibert, S. P. & Geist, J. HESS Opinions: Socio-economic and ecological trade-offs of flood management—benefits of a transdisciplinary approach. Hydrol. Earth Syst. Sc. 23, 1035–1044 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fung, Z., Pomun, T., Charles, K. J. & Kirchherr, J. Mapping the social impacts of small dams: The case of Thailand’s Ing River basin. Ambio 48, 180–191 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kareiva, P. M. Dam choices: Analyses for multiple needs. Proc. Natl. Acad. Sci. USA 109, 5553–5554 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lund, J. R. Integrating social and physical sciences in water management. Water Resour. Res. 51, 5905–5918 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wesselink, A., Kooy, M. & Warner, J. Socio-hydrology and hydrosocial analysis: toward dialogues across disciplines. WIREs Water 4, e1196 (2017).

    Article 

    Google Scholar
     

  • Pahl-Wostl, C. The role of governance modes and meta-governance in the transformation towards sustainable water governance. Environ. Sci. Policy 91, 6–16 (2019).

    Article 

    Google Scholar
     

  • Hadjimichael, A. et al. Defining robustness, vulnerabilities, and consequential scenarios for diverse stakeholder interests in institutionally complex river basins. Earth’s Future 8, e2020EF001503 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mekong River Commission. Basin-Wide Assessment of Climate Change Impacts on Hydropower Production. Final Report. Vientiane, Lao PDR; 2018 September 2018.

  • Kang, H., Sridhar, V., Mainuddin, M. & Trung, L. D. Future rice farming threatened by drought in the Lower Mekong Basin. Sci. Rep. 11, 9383 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darby, S. E. et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature 539, 276–279 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gunawardana, S. K., Shrestha, S., Mohanasundaram, S., Salin, K. R. & Piman, T. Multiple drivers of hydrological alteration in the transboundary Srepok River Basin of the Lower Mekong Region. J. Environ. Manag. 278, 111524 (2021).

    Article 

    Google Scholar
     

  • Wild, T. B. & Loucks, D. P. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San, and Se Kong Rivers of the Mekong basin. Water Resour. Res. 50, 5141–5157 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kondolf, G. M. et al. Changing sediment budget of the Mekong: Cumulative threats and management strategies for a large river basin. Sci. Total Environ. 625, 114–134 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Null, S. E. et al. A meta-analysis of environmental tradeoffs of hydropower dams in the sekong, sesan, and srepok (3S) rivers of the lower mekong basin. Water 13, 63 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shrestha, B., Cochrane, T. A., Caruso, B. S., Arias, M. E. & Piman, T. Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin. J. Hydrol. 540, 1088–1104 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Shrestha, B., Cochrane, T. A., Caruso, B. S. & Arias, M. E. Land use change uncertainty impacts on streamflow and sediment projections in areas undergoing rapid development: A case study in the Mekong Basin. Land Degrad. Dev. 29, 835–848 (2018).

    Article 

    Google Scholar
     

  • Lane, S. N. Acting, predicting and intervening in a socio-hydrological world. Hydrol. Earth Syst. Sci. 18, 927–952 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Sivapalan, M. & Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 51, 6988–7022 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schmitt, R. J. P., Bizzi, S., Castelletti, A. & Kondolf, G. M. Improved trade-offs of hydropower and sand connectivity by strategic dam planning in the Mekong. Nat. Sustain. 1, 96–104 (2018).

    Article 

    Google Scholar
     

  • Mohammed, I. N., Bolten, J. D., Srinivasan, R. & Lakshmi, V. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 564, 559–573 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Vollmer, D. et al. Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Sci. Total Environ. 627, 304–313 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Souter, N. J. et al. Using the freshwater health index to assess hydropower development scenarios in the Sesan, Srepok and Sekong River Basin. Water 12, 788 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mekong River Commission. The Council Study: The Study on the Sustainable Management and Development of the Mekong River Basin including Impacts of Mainstream Hydropower Projects. Climate Change Report. Vientiane, Laos; 2017.

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bezerra, M. O., et al. Operationalizing integrated water resource management in latin america: insights from application of the freshwater health index. Environ. Manag. (2021).

  • Wen, Z., Li, X. & Li, T. Comprehensive Study on Freshwater Ecosystem Health of Lancang River Basin in Xishuangbanna of China. Water 12, 1716 (2020).

    Article 

    Google Scholar
     

  • Gehrke, P. C., Brown, P., Schiller, C. B., Moffatt, D. B. & Bruce, A. M. River regulation and fish communities in the Murray-Darling river system, Australia. Regul. River 11, 363–375 (1995).

    Article 

    Google Scholar
     

  • Mohammed, I. N., Bolten, J., Srinivasan, R. & Lakshmi, V. Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sens. 10, 885 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Poff, N. A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshw. Biol. 36, 71–79 (1996).

    Article 

    Google Scholar
     

  • Tsang, Y., Infante, D. M., Wang, L., Krueger, D. & Wieferich, D. Conserving stream fishes with changing climate: Assessing fish responses to changes in habitat over a large region. Sci. Total Environ. 755, 142503 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polimeni, J. M., Iorgulescu, R. I. & Chandrasekara, R. Trans-border public health vulnerability and hydroelectric projects: The case of Yali Falls Dam. Ecol. Econ. 98, 81–89 (2014).

    Article 

    Google Scholar
     

  • Yun, X. et al. Can reservoir regulation mitigate future climate change induced hydrological extremes in the Lancang-Mekong River Basin?. Sci. Total Environ. 785, 147322 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, X., Souter, N. J., Wang, R. Y. & Vollmer, D. Aligning the freshwater health index indicator system against the transboundary water governance framework of Southeast Asia’s Sesan, Srepok, and Sekong River Basin. Water 11, 2307 (2019).

    Article 

    Google Scholar
     

  • Ha, T. P., Dieperink, C., DangTri, V. P., Otter, H. S. & Hoekstra, P. Governance conditions for adaptive freshwater management in the Vietnamese Mekong Delta. J. Hydrol. 557, 116–127 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wesselink, A. et al. Trends in flood risk management in deltas around the world: Are we going ‘soft’?. IJWG 3, 25–46 (2015).


    Google Scholar
     

  • Soukhaphon, A., Baird, I. G. & Hogan, Z. S. The Impacts of Hydropower Dams in the Mekong River Basin: A Review. Water 13, 265 (2021).

    Article 

    Google Scholar
     

  • Wan Mohtar, W. H. M. et al. Assessment of dam appurtenant structures under multiple flow discharge scenarios. Ain Shams Eng. J. 11, 913–922 (2020).

    Article 

    Google Scholar
     

  • IHA. The 2020 hydropower status report: Sector trends and insights. London, United Kingdom: International Hydropower Association; 2020.

  • Merme, V., Ahlers, R. & Gupta, J. Private equity, public affair: Hydropower financing in the Mekong Basin. Global Environ. Chang. 24, 20–29 (2014).

    Article 

    Google Scholar
     

  • Mohammed, I. N. NASAaccess: Downloading and reformatting tool for NASA earth observation data products. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, 2019. https://github.com/nasa/NASAaccess.

  • Mohammed, I. N. et al. Ground and satellite based observation datasets for the Lower Mekong River Basin. Data Brief 21, 2020–2027 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, J. G. et al. SWAT: model use, calibration, and validation. T ASABE 55, 1491–1508 (2012).

    Article 

    Google Scholar
     

  • Wood, A. W., Leung, L. R., Sridhar, V. & Lettenmaier, D. P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change 62, 189–216 (2004).

    Article 

    Google Scholar
     

  • Wood, A. W., Maurer, E. P., Kumar, A. & Lettenmaier, D. P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res-Atmos. 107, 4429 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Maurer, E. P. & Hidalgo, H. G. Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci. 12, 551–563 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Oeurng, C., Cochrane, T. A., Arias, M. E., Shrestha, B. & Piman, T. Assessment of changes in riverine nitrate in the Sesan, Srepok and Sekong tributaries of the Lower Mekong River Basin. J. Hydrol. Reg. St. 8, 95–111 (2016).

    Article 

    Google Scholar
     

  • Huffman, G. J., et al. NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf (2018).

  • WLE. Dataset on the dams of the Irrawaddy, Mekong, Red and Salween River Basins. CGIAR Research Program on Water Land and Ecosystems – Greater Mekong https://wle-mekong.cgiar.org/maps/ (2019).

  • Basist, A., Carr, A., Eyler, B., Weatherby, C. & Williams, C. Mekong Dam Monitor: An open-source online platform for near-real time monitoring of dams and environmental impacts in the Mekong Basin https://www.stimson.org/project/mekong-dam-monitor/ (2020).

  • The Mekong River Commission. Near Real-time Hydrometeorological Monitoring https://monitoring.mrcmekong.org/ (2020).

  • Food and Agriculture Organization of the United Nations. AQUASTAT – FAO’s Global Information System on Water and Agriculture http://www.fao.org/aquastat/en/databases/dams (2015).

  • Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784 (1997).

    Article 

    Google Scholar
     

  • Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 30, 492–507 (2002).

    Article 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button