Robotics

Towards edible robots and robotic food


  • Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sethi, S. S., Kovac, M., Wiesemüller, F., Miriyev, A. & Boutry, C. M. Biodegradable sensors are ready to transform autonomous ecological monitoring. Nat. Ecol. Evol. 6, 1245–1247 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hartmann, F., Baumgartner, M. & Kaltenbrunner, M. Becoming sustainable, the new frontier in soft robotics. Adv. Mater. 33, 2004413 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of drug release via intra body communication with an edible pill. Adv. Mater. Technol. 8, 2200731 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Marik, P. E. Aspiration pneumonitis and aspiration pneumonia. N. Engl. J. Med. 344, 665–671 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amirkolaie, A. K. Reduction in the environmental impact of waste discharged by fish farms through feed and feeding: aquaculture and the environment. Rev. Aquac. 3, 19–26 (2011).

    Article 

    Google Scholar
     

  • Just Economics. Dead loss: the high cost of poor farming practices and mortalities on salmon farms. Changing Markets Foundation https://www.justeconomics.co.uk/uploads/reports/Aquaculture-Report-v5.pdf (2021).

  • Pohlmann, K., Grasso, F. W. & Breithaupt, T. Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc. Natl Acad. Sci. USA 98, 7371–7374 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Fraser, D. Toward a synthesis of conservation and animal welfare science. Anim. Welf. 19, 121–124 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fraser, D. Understanding animal welfare. Acta Vet. Scand. 50, S1 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashby, M. F. Materials selection in mechanical design. MRS Bull. 30, 994–997 (1999).


    Google Scholar
     

  • Radhakrishnan, V. Locomotion: dealing with friction. Proc. Natl Acad. Sci. USA 95, 5448–5455 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godshall, M. A., Eggleston, G., Thompson, J. & Kochergin, V. in Kirk-Othmer Encyclopedia of Chemical Technology 1–84 (Wiley, 2021).

  • Ramos, K. J. & Bahr, D. F. Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 22, 2037–2045 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Eichhorn, S. J. & Young, R. J. The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197–207 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Sun, C. True density of microcrystalline cellulose. J. Pharm. Sci. 94, 2132–2134 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keetels, C. J. A. M., van Vliet, T. & Walstra, P. Relationship between the sponge structure of starch bread and its mechanical properties. J. Cereal Sci. 24, 27–31 (1996).

    Article 

    Google Scholar
     

  • Liu, Z. & Scanlon, M. G. Understanding and modeling the processing-mechanical property relationship of bread crumb assessed by indentation. Cereal Chem. 79, 763–767 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Shintake, J., Sonar, H., Piskarev, E., Paik, J. & Floreano, D. Soft pneumatic gelatin actuator for edible robotics. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6221–6226 (IEEE, 2017).

  • Kwak, B., Shintake, J., Zhang, L. & Floreano, D. Towards edible drones for rescue missions: design and flight of nutritional wings. in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1802–1809 (IEEE, 2022).

  • Qi, Q., Keller, A., Tan, L., Kumaresan, Y. & Rossiter, J. Edible, optically modulating, shape memory oleogel composites for sustainable soft robotics. Mater. Des. 235, 112339 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bourlieu, C., Guillard, V., Vallès-Pàmies, B. & Gontard, N. in Food Materials Science: Principles and Practice Ch. 23 (Springer, 2008).

  • Yuan, Y. et al. Shellac: a promising natural polymer in the food industry. Trends Food Sci. Technol. 109, 139–153 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Functional food packaging for reducing residual liquid food: thermo-resistant edible super-hydrophobic coating from coffee and beeswax. J. Colloid Interface Sci. 533, 742–749 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D., Huang, J., Guo, Z. & Liu, W. Durable mixed edible wax coating with stretching superhydrophobicity. J. Mater. Chem. A 9, 1495–1499 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wösten, H. A. B. & Scholtmeijer, K. Applications of hydrophobins: current state and perspectives. Appl. Microbiol. Biotechnol. 99, 1587–1597 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Maulana, M. I. et al. Environmentally friendly starch-based adhesives for bonding high-performance wood composites: a review. Forests 13, 1614 (2022).

    Article 

    Google Scholar
     

  • Mukherjee, T., Lerma‐Reyes, R., Thompson, K. A. & Schrick, K. Making glue from seeds and gums: working with plant‐based polymers to introduce students to plant biochemistry. Biochem. Mol. Biol. Educ. 47, 468–475 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll, K. M. & Erhan, S. Z. Evaluation of a sugar-based edible adhesive using a tensile strength tester. J. Lab. Autom. 16, 153–156 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Román, J. K. & Wilker, J. J. Cooking chemistry transforms proteins into high-strength adhesives. J. Am. Chem. Soc. 141, 1359–1365 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schmidt, G. et al. Strong adhesives from corn protein and tannic acid. Adv. Sustain. Syst. 3, 1900077 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Moubarik, A., Charrier, B., Allal, A., Charrier, F. & Pizzi, A. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Prod. 68, 167–177 (2010).

    Article 
    CAS 

    Google Scholar
     

  • North, M. A., Del Grosso, C. A. & Wilker, J. J. High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl. Mater. Interfaces 9, 7866–7872 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cataldi, P. et al. An electrically conductive oleogel paste for edible electronics. Adv. Funct. Mater. 32, 2113417 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wei, M., Gao, Y., Li, X. & Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2016).

    Article 

    Google Scholar
     

  • Mirvakili, S. M. & Hunter, I. W. Artificial muscles: mechanisms, applications, and challenges. Adv. Mater. 30, 1704407 (2018).

    Article 

    Google Scholar
     

  • Aubin, C. A. et al. Powerful, soft combustion actuators for insect-scale robots. Science 381, 1212–1217 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumgartner, M. et al. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102–1109 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sardesai, A. N. et al. Design and characterization of edible soft robotic candy actuators. MRS Adv. 3, 3003–3009 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hughes, J. & Rus, D. Mechanically programmable, degradable & ingestible soft actuators. in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) 836–843 (IEEE, 2020).

  • Ahn, S., Kasi, R. M., Kim, S.-C., Sharma, N. & Zhou, Y. Stimuli-responsive polymer gels. Soft Matter 4, 1151–1157 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. et al. Stimulus-responsive hydrogels in food science: a review. Food Hydrocolloids 124, 107218 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Djabourov, M., Nishinari, K. & Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers (Cambridge Univ. Press, 2013).

  • Keller, A. G., Qi, Q., Kumaresan, Y., Conn, A. T. & Rossiter, J. Biodegradable humidity actuators for sustainable soft robotics using deliquescent hydrogels. in 2023 IEEE International Conference on Soft Robotics (RoboSoft) 1–6 (IEEE, 2023).

  • Sarıyer, S., Duranoğlu, D., Doğan, Ö. & Küçük, İ. pH-responsive double network alginate/kappa-carrageenan hydrogel beads for controlled protein release: effect of pH and crosslinking agent. J. Drug Deliv. Sci. Technol. 56, 101551 (2020).

    Article 

    Google Scholar
     

  • Shigemitsu, H. et al. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks. Nat. Nanotechnol. 13, 165–172 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali, A. & Ahmed, S. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem. 66, 6940–6967 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 46, 183–196 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari, A. et al. in Stimuli-responsive polysaccharides for colon-targeted drug delivery Vol. 2, 547–566 (Woodhead Publishing, 2019).

  • Wang, W. et al. Transformative appetite: shape-changing food transforms from 2D to 3D by water interaction through cooking. in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems 6123–6132 (ACM, 2017).

  • Tao, Y. et al. Morphlour: personalized flour-based morphing food induced by dehydration or hydration method. in Proc. 32nd Annual ACM Symposium on User Interface Software and Technology 329–340 (ACM, 2019).

  • Tao, Y. et al. Morphing pasta and beyond. Sci. Adv. 7, eabf4098 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sessini, V., Arrieta, M. P., Fernández-Torres, A. & Peponi, L. Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohydr. Polym. 179, 93–99 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, L. D., Winfield, J., Ieropoulos, I. & Rossiter, J. Biodegradable and edible gelatine actuators for use as artificial muscles. in Proc. SPIE 9056, Electroactive Polymer Actuators and Devices (EAPAD) (ed. Bar-Cohen, Y.) (SPIE, 2014).

  • Zhu, X. et al. Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydr. Polym. 276, 118759 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yun, S., Kim, J. & Song, C. Performance of electro-active paper actuators with thickness variation. Sens. Actuators A Phys. 133, 225–230 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Rehman, H. M. M. U. et al. Edible rice paper-based multifunctional humidity sensor powered by triboelectricity. Sustain. Mater. Technol. 36, e00596 (2023).

    CAS 

    Google Scholar
     

  • Hou, S. et al. Ingestible, biofriendly, and flexible flour-based humidity sensors with a wide sensing range. ACS Appl. Electron. Mater. 3, 2798–2806 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ilic, I. K. et al. Self-powered edible defrosting sensor. ACS Sens. 7, 2995–3005 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuswandi, B., Asih, N. P. N., Pratoko, D. K., Kristiningrum, N. & Moradi, M. Edible pH sensor based on immobilized red cabbage anthocyanins into bacterial cellulose membrane for intelligent food packaging. Packag. Technol. Sci. 33, 321–332 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mallov, I., Jeeva, F. & Caputo, C. B. An edible genipin‐based sensor for biogenic amine detection. J. Chem. Tech. Biotech. 97, 830–836 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Court, R. C. V., Giesbers, G., Ostroverkhova, O. & Robinson, S. C. Optimizing xylindein from Chlorociboria spp. for (opto)electronic applications. Processes 8, 1477 (2020).

    Article 

    Google Scholar
     

  • Costanza, V. et al. Effect of glycerol on the mechanical and temperature-sensing properties of pectin films. Appl. Phys. Lett. 115, 193702 (2019).

    Article 

    Google Scholar
     

  • Di Giacomo, R., Bonanomi, L., Costanza, V., Maresca, B. & Daraio, C. Biomimetic temperature-sensing layer for artificial skins. Sci. Robot. 2, eaai9251 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hardman, D., George Thuruthel, T. & Iida, F. Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Mater. 14, 11 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Keller, A., Benz, D. & In Het Panhuis, M. Strain and pressure gauges from tough, conducting and edible hydrogels. MRS Proc. 1795, 27–33 (2015).

    Article 

    Google Scholar
     

  • Annese, V. F., Galli, V., Coco, G. & Caironi, M. Eat, test, digest: towards diagnostic food for next-generation gastrointestinal tract monitoring. in 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI) 236–240 (IEEE, 2023).

  • Keller, A., Pham, J., Warren, H. & In Het Panhuis, M. Conducting hydrogels for edible electrodes. J. Mater. Chem. B 5, 5318–5328 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, W. et al. Food-based edible and nutritive electronics. Adv. Mater. Technol. 2, 1700181 (2017).

    Article 

    Google Scholar
     

  • Annese, V. F. et al. An edible bistable tilt sensor enabling autonomous operation of a partially eatable rolling robot. Adv. Sensor Res. 2, 2300092 (2023).

    Article 

    Google Scholar
     

  • Ramadi, K. B. et al. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci. Robot. 8, eade9676 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, S. et al. A degradable-renewable ionic skin based on edible glutinous rice gel. ACS Appl. Mater. Interfaces 14, 5122–5133 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, D. & Chua, B. Soft candy as an electronic material suitable for salivary conductivity-based medical diagnostics in resource-scarce clinical settings. ACS Appl. Mater. Interfaces 13, 43984–43992 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Valdepeñas Montiel, V. et al. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 411, 4597–4604 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. Edible electrochemistry: food materials based electrochemical sensors. Adv. Healthc. Mater. 6, 1700770 (2017).

    Article 

    Google Scholar
     

  • Fukada, K., Tajima, T. & Seyama, M. Food‐based capacitive sensors using a dynamic permittivity change with hydrogels responsive to hydrogen peroxide. Adv. Mater. Technol. 7, 2200830 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Seo, J. et al. Wireless electrical power delivery using light through soft skin tissues under misalignment and deformation. Adv. Mater. Interfaces 9, 2102586 (2022).

    Article 

    Google Scholar
     

  • Zayats, V. V., Sergeev, I. K. & Fedorov, D. A. Review of promising methods of supplying power to implantable medical devices. Biomed. Eng. 57, 39–44 (2023).

    Article 

    Google Scholar
     

  • Sharova, A. S., Melloni, F., Lanzani, G., Bettinger, C. J. & Caironi, M. Edible electronics: the vision and the challenge. Adv. Mater. Technol. 6, 2000757 (2021).

    Article 

    Google Scholar
     

  • Saravanavel, G. et al. Sweet-tooth: resonators on sugar. IEEE J. Flex. Electron. https://doi.org/10.1109/JFLEX.2023.3273183 (2023).

  • Chen, K. et al. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS Nano 16, 15261–15272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, C. A., Alici, G. & In Het Panhuis, M. 3D printing vegemite and marmite: redefining “breadboards”. J. Food Eng. 220, 83–88 (2018).

    Article 

    Google Scholar
     

  • Burch, R. R., Dong, Y.-H., Fincher, C., Goldfinger, M. & Rouviere, P. E. Electrical properties of polyunsaturated natural products: field effect mobility of carotenoid polyenes. Synth. Met. 146, 43–46 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bouzidi, A. et al. Electronic conduction mechanism and optical spectroscopy of indigo carmine as novel organic semiconductors. Opt. Quant. Electron. 50, 176 (2018).

    Article 

    Google Scholar
     

  • Irimia-Vladu, M. et al. Indigo — a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24, 375–380 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakuphanoglu, F., Kandaz, M., Yaraşır, M. N. & Şenkal, F. B. Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B Condens. Matter 393, 235–238 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Giesbers, G. et al. Xylindein: naturally produced fungal compound for sustainable (opto)electronics. ACS Omega 4, 13309–13318 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porrazzo, R. et al. Water-gated n-type organic field-effect transistors for complementary integrated circuits operating in an aqueous environment. ACS Omega 2, 1–10 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharova, A. S. & Caironi, M. Sweet electronics: honey‐gated complementary organic transistors and circuits operating in air. Adv. Mater. 33, 2103183 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mandal, S. et al. Low operating voltage organic field-effect transistors with gelatin as a moisture-induced ionic dielectric layer: the issues of high carrier mobility. ACS Appl. Mater. Interfaces 12, 19727–19736 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumitru, L. M. et al. A hydrogel capsule as gate dielectric in flexible organic field-effect transistors. Apl. Mater. 3, 014904 (2014).

    Article 

    Google Scholar
     

  • Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothemund, P. et al. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3, eaar7986 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Song, S., Joshi, S. & Paik, J. CMOS‐inspired complementary fluidic circuits for soft robots. Adv. Sci. 8, 2100924 (2021).

    Article 

    Google Scholar
     

  • Deng, J. et al. Logic bonbon: exploring food as computational artifact. in CHI Conference on Human Factors in Computing Systems 1–21 (ACM, 2022).

  • Zhang, S., Kwak, B. & Floreano, D. Design and manufacture of edible microfluidic logic gates. in 2023 IEEE International Conference on Soft Robotics (RoboSoft) 1–7 (2023).

  • Ilic, I. K. et al. An edible rechargeable battery. Adv. Mater. 35, 2211400 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. J., Chun, S.-E., Whitacre, J. & Bettinger, C. J. Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1, 3781 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–20917 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamanna, L. et al. Edible cellulose-based conductive composites for triboelectric nanogenerators and supercapacitors. Nano Energy 108, 108168 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Food-materials-based edible supercapacitors. Adv. Mater. Technol. 1, 1600059 (2016).

    Article 

    Google Scholar
     

  • Gao, C. et al. A directly swallowable and ingestible micro-supercapacitor. J. Mater. Chem. A 8, 4055–4061 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ieropoulos, I. A., Greenman, J., Melhuish, C. & Horsfield, I. Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem 5, 1020–1026 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philamore, H., Rossiter, J., Stinchcombe, A. & Ieropoulos, I. Row-bot: an energetically autonomous artificial water boatman. in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3888–3893 (IEEE, 2015).

  • Wilkinson, S. “Gastrobots” — benefits and challenges of microbial fuel cells in foodpowered robot applications. Auton. Robot. 9, 99–111 (2000).

    Article 

    Google Scholar
     

  • Jeerapan, I. et al. Fully edible biofuel cells. J. Mater. Chem. B 6, 3571–3578 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okui, M., Nagura, Y., Iikawa, S., Yamada, Y. & Nakamura, T. A pneumatic power source using a sodium bicarbonate and citric acid reaction with pressure booster for use in mobile devices. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1040–1045 (IEEE, 2017).

  • Ghosh, S. K., Park, J., Na, S., Kim, M. P. & Ko, H. A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv. Sci. 8, 2005010 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cuadros, T. R., Erices, A. A. & Aguilera, J. M. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J. Mech. Behav. Biomed. Mater. 46, 331–342 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekkers, B. L., Boom, R. M. & van der Goot, A. J. Structuring processes for meat analogues. Trends Food Sci. Technol. 81, 25–36 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dankar, I., Haddarah, A., Omar, F. E. L., Sepulcre, F. & Pujolà, M. 3D printing technology: the new era for food customization and elaboration. Trends Food Sci. Technol. 75, 231–242 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H., Luo, D., Qian, K. & Yao, L. Freeform fabrication of fluidic edible materials. in Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–10 (ACM, 2021).

  • Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H. & Hong, G. S. An overview of 3D printing technologies for food fabrication. Food Bioprocess. Technol. 8, 1605–1615 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gervasoni, S. et al. CANDYBOTS: a new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater. 32, e2005652 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • van der Sman, R. G. M. & Broeze, J. Structuring of indirectly expanded snacks based on potato ingredients: a review. J. Food Eng. 114, 413–425 (2013).

    Article 

    Google Scholar
     

  • Liu, Z., Zhang, M., Bhandari, B. & Wang, Y. 3D printing: printing precision and application in food sector. Trends Food Sci. Technol. 69, 83–94 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Navaf, M. et al. 4D printing: a new approach for food printing; effect of various stimuli on 4D printed food properties. A comprehensive review. Appl. Food Res. 2, 100150 (2022).

    Article 

    Google Scholar
     

  • Teng, X., Zhang, M. & Mujumdar, A. S. 4D printing: recent advances and proposals in the food sector. Trends Food Sci. Technol. 110, 349–363 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Amit, S. K., Uddin, Md, M., Rahman, R., Islam, S. M. R. & Khan, M. S. A review on mechanisms and commercial aspects of food preservation and processing. Agric. Food Secur. 6, 51 (2017).

    Article 

    Google Scholar
     

  • Khan, S., Lorenzelli, L. & Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).

    Article 

    Google Scholar
     

  • Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chyan, Y. et al. Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12, 2176–2183 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon 2, 219–225 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55, 181–186 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. in Food Futures: Sensory Explorations in Food Design (eds Sweetapple, K. & Warriner, G.) 214–217 (Promopress, 2017).

  • Grover, W. H. CandyCodes: simple universally unique edible identifiers for confirming the authenticity of pharmaceuticals. Sci. Rep. 12, 7452 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyatake, Y., Punpongsanon, P., Iwai, D. & Sato, K. interiqr: unobtrusive edible tags using food 3D printing. in Proc. 35th Annual ACM Symposium on User Interface Software and Technology 1–11 (ACM, 2022).

  • Hitti, N. Erika Marthins uses edible robotics and digital data for sensory desserts. Dezeen https://www.dezeen.com/2018/01/20/erika-marthins-combines-edible-robotics-digital-data-and-food-to-create-sensory-desserts/ (2018).

  • Sun, W. et al. Biodegradable, sustainable hydrogel actuators with shape and stiffness morphing capabilities via embedded 3D printing. Adv. Funct. Mater. 33, 2303659 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pratt, J., Radulescu, P. V., Guo, R. M. & Abrams, R. A. It’s alive!: animate motion captures visual attention. Psychol. Sci. 21, 1724–1730 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Spence, C. Why are animate dishes so disturbing? Int. J. Gastron. Food Sci. 13, 73–77 (2018).

    Article 

    Google Scholar
     

  • Spence, C. & Youssef, J. On the rise of shocking food. Int. J. Gastron. Food Sci. 30, 100615 (2022).

    Article 

    Google Scholar
     

  • Mochiyama, H., Ando, M., Misu, K. & Kuroyanagi, T. A study of potential social impacts of soft robots with organic and edible bodies by observation of an artwork. in 2019 IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO) 208–212 (IEEE, 2019).

  • Ishii, A. & Siio, I. BubBowl: display vessel using electrolysis bubbles in drinkable beverages. in Proc. 32nd Annual ACM Symposium on User Interface Software and Technology 619–623 (ACM, 2019).

  • Van Doleweerd, E., Altarriba Bertran, F. & Bruns, M. Incorporating shape-changing food materials into everyday culinary practices: guidelines informed by participatory sessions with chefs involving edible pH-responsive origami structures. in Proceedings of Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction 1–14 (ACM, 2022).

  • Burton, L. J., Cheng, N. & Bush, J. W. M. The cocktail boat. Integr. Comp. Biol. 54, 969–973 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brodkorb, A. et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 14, 991–1014 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Wiele, T. et al. in The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models (eds Verhoeckx, K. et al.) 305–317 (Springer, 2015).

  • Smeets, P. A. M., Deng, R., van Eijnatten, E. J. M. & Mayar, M. Monitoring food digestion with magnetic resonance techniques. Proc. Nutr. Soc. 80, 148–158 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Buchner, T. J. K. et al. Vision-controlled jetting for composite systems and robots. Nature 623, 522–530 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. et al. 3D-printed programmable tensegrity for soft robotics. Sci. Robot. 5, eaay9024 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Nakata, Y. et al. Exploring the eating experience of a pneumatically-driven edible robot: perception, taste, and texture. PLoS ONE 19, e0296697 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotynia, R., Adamczewska, K., Strąkowska, A., Masłowski, M. & Strzelec, K. Effect of accelerated curing conditions on shear strength and glass transition temperature of epoxy adhesives. Procedia Eng. 193, 423–430 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Frihart, C. R. Are epoxy-wood bonds durable enough? in Wood Adhesives 2005 241–246 (Forest Products Society, 2005).

  • Henkel. LOCTITE®638TM technical data sheet. Henkel https://datasheets.tdx.henkel.com/LOCTITE-638-en_GL.pdf (2022).

  • Henkel. Loctite PL Premium Fast Grab technical data sheet. Henkel https://dm.henkel-dam.com/is/content/henkel/tds-us-loctite-loc-pl-premium-8x-fast-grab-2019-12-12 (2019).

  • Sikora, K. S., McPolin, D. O. & Harte, A. M. Shear strength and durability testing of adhesive bonds in cross-laminated timber. J. Adhes. 92, 758–777 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z., Li, Z., Gu, Z., Hong, Y. & Cheng, L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydr. Polym. 88, 699–706 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 3M. 3M Hot Melt Adhesive technical data sheet. 3M https://multimedia.3m.com/mws/media/1245165O/3m-hot-melt-adhesive-3792lm-3776lm-3738-3792-technical-data.pdf (2016).

  • Wei, Y., Yao, J., Shao, Z. & Chen, X. Water-resistant zein-based adhesives. ACS Sustain. Chem. Eng. 8, 7668–7679 (2020).

    Article 
    CAS 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button