EV

Industry perspective on power electronics for electric vehicles


  • The Oregon Group. Electronic Car Sales Break New Records with Momentum Expected to Continue Through 2023 (International Energy Agency, 2023).

  • Irle, R. Global EV Sales for 2023. EV Volumes https://ev-volumes.com/news/ev/global-ev-sales-for-2023/ (2024).

  • Yang, Y. Faster and Stronger: How Will Power Electronics for EVs Reach $9.8 Billion by 2028? Yole Group https://www.yolegroup.com/press-release/faster-and-stronger-how-will-power-electronics-for-evs-reach-9-8-billion-by-2028/ (2023).

  • McKerracher, C. Battery Bloat Could Backfire on Electric Vehicle Manufacturers. Bloombergnef https://about.bnef.com/blog/battery-bloat-could-backfire-on-electric-vehicle-manufacturers/ (2023).

  • Baliga, B. J. Enhancement- and depletion-mode vertical-channel m.o.s. gated thyristors. Electron. Lett. 15, 645–647 (1979).


    Google Scholar
     

  • Takeda, T. et al. 1200 V trench gate NPT-IGBT (IEGT) with excellent low on-state voltage. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 75–79 (IEEE, 1998).

  • Laska, T. et al. 1200 V-trench-IGBT study with square short circuit SOA. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 433–436 (IEEE, 1998).

  • Jaeger, C., Philippou, A., VeIlei, A., Laven, J. G. & Härtl, A. A new sub-micron trench cell concept in ultrathin wafer technology for next generation 1200 V IGBTs. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 69–72 (IEEE, 2017). The state-of-the-art Si insulated-gate bipolar transistors with MPT for further reduction of Ron and VCE,sat.

  • Imperiale, I. et al. Opportunities and challenges of a 1200 V IGBT for 5 V gate voltage operation. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 505–508 (IEEE, 2020).

  • Mori, M. et al. A planar-gate high-conductivity IGBT (HiGT) with hole-barrier layer. IEEE Trans. Electron Dev. 54, 1515–1520 (2007).


    Google Scholar
     

  • Laska, T., Munzer, M., Pfirsch, F., Schaeffer, C. & Schmidt, T. The field stop IGBT (FS IGBT). A new power device concept with a great improvement potential. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 355–358 (IEEE, 2000).

  • Miller, G. & Sack, J. A new concept for a non punch through IGBT with MOSFET like switching characteristics. In IEEE Power Electronics Specialists Conf. (PESC) 21–25 (IEEE, 1989).

  • Matsudai, T. et al. Advanced 60µm thin 600V punch-through IGBT concept for extremely low forward voltage and low turn-off loss. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 441–444 (IEEE, 2001).

  • Rahimo, M., Kopta, A. & Linder, S. In Novel enhanced-planar IGBT technology rated up to 6.5kV for lower losses and higher SOA capability. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 1–4 (IEEE, 2006).

  • Andenna, M. et al. Soft-punch-through buffer concept for 600–1200 V IGBTs. IET Power Electron. 12, 3874–3881 (2019).


    Google Scholar
     

  • Nakamura, K. et al. Advanced wide cell pitch CSTBTs having light punch-through (LPT) structures. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 277–280 (IEEE, 2002).

  • Takahashi, H., Yamamoto, A., Aono, S. & Minato, T. 1200V reverse conducting IGBT. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 133–136 (IEEE, 2004).

  • Tran, Q. T. et al. RC-GID IGBT – A novel reverse-conducting IGBT with a gate voltage independent diode characteristic and low power losses. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 347–350 (IEEE, 2021).

  • Baliga, B. J. Power semiconductor device figure of merit for high-frequency applications. IEEE Electron. Dev. Lett. 10, 455–457 (1989).


    Google Scholar
     

  • Li, H., Dimitrijev, S., Harrison, H. B. & Sweatman, D. Interfacial characteristics of N2O and NO nitrided SiO2 grown on SiC by rapid thermal processing. Appl. Phys. Lett. 70, 2028–2030 (1997).


    Google Scholar
     

  • Gammon, P. Taking Stock of SiC, Part 1: A Review of SiC Cost Competitiveness and a Roadmap to Lower Cost. PGC Consultancy https://www.pgcconsultancy.com/post/taking-stock-of-sic-part-1-a-review-of-sic-cost-competitiveness-and-a-roadmap-to-lower-costs (2021).

  • Kimoto, T. & Watanabe, H. Defect engineering in SiC technology for high-voltage power devices. Appl. Phys. Expr. 13, 120101 (2020).


    Google Scholar
     

  • Afanasev, V. V., Bassler, M., Pensl, G. & Schulz, M. Intrinsic SiC/SiO2 interface states. Phys. Status Solidi A 162, 321–337 (1997).


    Google Scholar
     

  • Pensl, G. et al. Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors. Phys. Status Solidi B 245, 1378–1389 (2008).


    Google Scholar
     

  • Chung, G. Y. et al. Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide. Appl. Phys. Lett. 76, 1713–1715 (2000).


    Google Scholar
     

  • Tachiki, K., Kaneko, M. & Kimoto, T. Mobility improvement of 4H-SiC (0001) MOSFETs by a three-step process of H2 etching, SiO2 deposition, and interface nitridation. Appl. Phys. Expr. 14, 031001 (2021).


    Google Scholar
     

  • Kimoto, T. et al. Physics and innovative technologies in SiC power devices. In IEEE International Electron Devices Meeting (IEDM) 36.1.1–36.1.4 (IEEE, 2021).

  • Ni, W. et al. 1700V 34mΩ 4H-SiC MOSFET with retrograde doping in junction field-effect transistor region. In IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC) 1–3 (IEEE, 2019).

  • Han, Z. et al. A novel 4H-SiC MOSFET for low switching loss and high-reliability applications. Semicond. Sci. Technol. 35, 085017 (2020).


    Google Scholar
     

  • Matin, M., Saha, A. & Cooper, J. A. A self-aligned process for high-voltage, short-channel vertical DMOSFETs in 4H-SiC. IEEE Trans. Electron. Dev. 51, 1721–1725 (2004).


    Google Scholar
     

  • Nakamura, T. et al. High performance SiC trench devices with ultra-low Ron. In IEEE International Electron Devices Meeting (IEDM) 26.5.1–26.5.3 (IEEE, 2011).

  • Peters, D. et al. Performance and ruggedness of 1200V SiC-Trench-MOSFET. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 239–242 (IEEE, 2017). The state-of-the-art trench gate SiC metal oxide semiconductor field-effect transistors with low Ron,sp and high short-circuit ruggedness.

  • Takaya, H. et al. A 4H-SiC trench MOSFET with thick bottom oxide for improving characteristics. In IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) 43–46 (IEEE, 2013).

  • Gajewski, D. A. et al. Reliability and standardization for SiC power devices. Mater. Sci. Forum 1092, 179–186 (2023).


    Google Scholar
     

  • Wei, J. et al. Review on the reliability mechanisms of SiC power MOSFETs: a comparison between planar-gate and trench-gate structures. IEEE Trans. Power Electron. 38, 8990–9005 (2023).


    Google Scholar
     

  • Volosov, V. et al. Role of interface/border traps on the threshold voltage instability of SiC power transistors. Solid-State Electron. 207, 108699 (2023).


    Google Scholar
     

  • Lin, W.-C. et al. Investigation of the time dependent gate dielectric stability in SiC MOSFETs with planar and trench gate structures. Microelectron. Reliab. 150, 115141 (2023).


    Google Scholar
     

  • Green, R., Lelis, A. & Habersat, D. Threshold-voltage bias-temperature instability in commercially-available SiC MOSFETs. Jpn. J. Appl. Phys. 55, 04EA03 (2016).


    Google Scholar
     

  • Mimura, T., Hiyamizu, S., Fujii, T. & Nanbu, K. A new field-effect transistor with selectively doped GaAs/n-AlxGa1−xAs heterojunctions. Jpn. J. Appl. Phys. 19, L225 (1980).


    Google Scholar
     

  • Asif Khan, M., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).


    Google Scholar
     

  • Park, S.-H. & Chuang, S.-L. Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects. J. Appl. Phys. 87, 353–364 (2000).


    Google Scholar
     

  • Ambacher, O. et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 87, 334–344 (2000).


    Google Scholar
     

  • Saito, W. et al. Field-plate structure dependence of current collapse phenomena in high-voltage GaN-HEMTs. IEEE Electron. Dev. Lett. 31, 659–661 (2010).


    Google Scholar
     

  • Saito, W. et al. Influence of surface defect charge at AlGaN-GaN-HEMT upon Schottky gate leakage current and breakdown voltage. IEEE Trans. Electron. Dev, 52, 159–164 (2005).


    Google Scholar
     

  • Ando, Y., Makisako, R., Takahashi, H., Wakejima, A. & Suda, J. Dependence of electrical characteristics on epitaxial layer structure of AlGaN/GaN HEMTs fabricated on freestanding GaN substrates. IEEE Trans. Electron. Dev. 69, 88–95 (2022).


    Google Scholar
     

  • Zanoni, E. et al. Reliability and failure physics of GaN HEMT, MIS-HEMT and p-gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time-dependent breakdown phenomena. In IEEE Wide Bandgap Power Devices and Applications (WiPDA) 75–80 (IEEE, 2015).

  • Moens, P. et al. On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices. In IEEE Intenational Symposium on Power Semiconductor Devices and ICs (ISPSD) 37–40 (IEEE, 2015).

  • Fu, H., Fu, K., Chowdhury, S., Palacios, T. & Zhao, Y. Vertical GaN power devices: device principles and fabrication technologies — part II. IEEE Trans. Electron. Dev. 68, 3212–3222 (2021).


    Google Scholar
     

  • Jones, E. A., Wang, F. & Ozpineci, B. Application-based review of GaN HFETs. In IEEE Wide Bandgap Power Devices and Applications (WiPDA) 24–29 (IEEE, 2014).

  • Huang, X., Liu, Z., Li, Q. & Lee, F. C. Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans. Power Electron. 29, 2453–2461 (2014).


    Google Scholar
     

  • Liu, Z., Huang, X., Lee, F. C. & Li, Q. Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT. IEEE Trans. Power Electron. 29, 1977–1985 (2014).


    Google Scholar
     

  • Greco, G., Iucolano, F. & Roccaforte, F. Review of technology for normally-off HEMTs with p-GaN gate. Mater. Sci. Semicond. Process. 78, 96–106 (2018).


    Google Scholar
     

  • Xu, N. et al. Gate leakage mechanisms in normally off p-GaN/AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 113, 152104 (2018).


    Google Scholar
     

  • Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron. Devices 64, 779–795 (2017). The state-of-the-art GaN-on-Si power devices in comparison to SiC metal oxide semiconductor field-effect transistors.


    Google Scholar
     

  • Reimers, J., Dorn-Gomba, L., Mak, C. & Emadi, A. Automotive traction inverters: current status and future trends. IEEE Trans. Veh. Technol. 68, 3337–3350 (2019).


    Google Scholar
     

  • Satpathy, S., Das, P. P., Bhattacharya, S. & Veliadis, V. Design considerations of a GaN-based three-level traction inverter for electric vehicles. In IEEE Wide Bandgap Power Devices & Applications (WiPDA) 192–197 (IEEE, 2022).

  • Holmes, D. G. & Lipo, T. A. Pulse Width Modulation for Power Converters: Principles and Practice Vol. 18 (John Wiley & Sons, 2003).

  • Aghabali, I. et al. 800-V electric vehicle powertrains: review and analysis of benefits, challenges, and future trends. IEEE Trans. Transp. Electrif. 7, 927–948 (2021). The benefits of increasing battery voltage from 400 V to 800 V.


    Google Scholar
     

  • Zhang, L. et al. Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules. IEEE Trans. Power Electron. 34, 1181–1196 (2018).


    Google Scholar
     

  • Oswald, N., Anthony, P., McNeill, N. & Stark, B. H. An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and all-SiC device combinations. IEEE Trans. Power Electron. 29, 2393–2407 (2014).


    Google Scholar
     

  • Wang, G. et al. Performance comparison of 1200V 100A SiC MOSFET and 1200V 100A silicon IGBT. In IEEE Energy Conversion Congress and Exposition (ECCE) 3230–3234 (IEEE, 2013).

  • Taha, W. et al. Holistic design and development of a 100 kW SiC-based six-phase traction inverter for an electric vehicle application. In IEEE Transactions on Transportation Electrification https://doi.org/10.1109/TTE.2023.3313511 (2023).

  • Wang, J., Laird, I., Yuan, X. & Zhou, W. In IEEE Energy Conversion Congress and Exposition (ECCE) 5202–5209 (2021).

  • Lu, J., Hou, R., Di Maso, P. & Styles, J. A GaN/Si Hybrid T-Type three-level configuration for electric vehicle traction inverter. In IEEE Wide Bandgap Power Devices and Applications (WiPDA) 77–81 (IEEE, 2018).

  • Millán, J., Godignon, P., Perpiñà, X., Pérez-Tomás, A. & Rebollo, J. A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29, 2155–2163 (2014).


    Google Scholar
     

  • Zhao, B., Song, Q., Liu, W. & Sun, Y. Overview of dual-active-bridge isolated bidirectional DC–DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29, 4091–4106 (2014). Overview of the dual-active bridge-isolated bidirectional DCDC converters.


    Google Scholar
     

  • Hurley, W. G., Gath, E. & Breslin, J. G. Optimizing the AC resistance of multilayer transformer windings with arbitrary current waveforms. IEEE Trans. Power Electron. 15, 369–376 (2000).


    Google Scholar
     

  • Mu, M., Li, Q., Gilham, D. J., Lee, F. C. & Ngo, K. D. T. New core loss measurement method for high-frequency magnetic materials. IEEE Trans. Power Electron. 29, 4374–4381 (2014).


    Google Scholar
     

  • Sullivan, C. R. Optimal choice for number of strands in a Litz-wire transformer winding. IEEE Trans. Power Electron. 14, 283–291 (1999).


    Google Scholar
     

  • Kieu, H. P., Lee, D., Choi, S. & Kim, S. GaN-based DC-DC converter with optimized integrated transformer for electrical vehicles. In IEEE Energy Conversion Congress and Exposition (ECCE) 5549–5553 (IEEE, 2021).

  • Islam, S., Iqbal, A., Marzband, M., Khan, I. & Al-Wahedi, A. M. A. B. State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renew. Sustain. Energy Rev. 166, 112574 (2022).


    Google Scholar
     

  • Kempton, W. & Tomić, J. Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 144, 280–294 (2005). Overview of the vehicle-to-grid bidirectional onboard chargers.


    Google Scholar
     

  • Rahman, S. A. & Persson, E. CoolGaN™ Totem-Pole PFC Design Guide and Power Loss Modeling. Infineon https://www.infineon.com/dgdl/Infineon-Design_guide_Gallium_Nitride-CoolGaN_totem-pole_PFC_power_loss_modeling-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626d82c047016d95daec4a769a (2019).

  • Wouters, H. & Martinez, W. Bidirectional onboard chargers for electric vehicles: state-of-the-art and future trends. IEEE Trans. Power Electron. 39, 693–716 (2023).


    Google Scholar
     

  • Etxandi-Santolaya, M., Canals Casals, L. & Corchero, C. Estimation of electric vehicle battery capacity requirements based on synthetic cycles. Transp. Res. D Transp. Environ. 114, 103545 (2023).


    Google Scholar
     

  • GaN-based, 6.6-kW, Bidirectional, Onboard Charger Reference Design. Texas Instruments https://www.ti.com/tool/PMP22650 (2021).

  • High Power Charging (HPC) Technology. Phoenix Contact https://www.phoenixcontact.com (2024).

  • Reber, V. E-power: New Possibilities with 800-Volt Charging. Porsche https://www.porscheengineering.com/peg/en/about/magazine/ (2023).

  • Burress, T. A. et al. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System. Oak Ridge National Laboratory https://www.osti.gov/biblio/1007833 (2011).

  • Kim, D.-H., Kim, M.-J. & Lee, B.-K. An integrated battery charger with high power density and efficiency for electric vehicles. IEEE Trans. Power Electron. 32, 4553–4565 (2017).


    Google Scholar
     

  • Oki, S. & Sato, Y. Nissan LEAF and e-POWER: evolution of motors and inverters. IEEJ J. Ind. Appl. 13, 8–16 (2024).


    Google Scholar
     

  • Chowdhury, S. et al. Enabling technologies for compact integrated electric drives for automotive traction applications. In IEEE Transportation Electrification Conference and Expo (ITEC) 1–8 (IEEE, 2019).

  • Matallana, A. et al. Power module electronics in HEV/EV applications: new trends in wide-bandgap semiconductor technologies and design aspects. Renew. Sustain. Energy Rev. 113, 109264 (2019).


    Google Scholar
     

  • Li, H. et al. Analysis of SiC MOSFET dI/dt and its temperature dependence. IET Power Electron. 11, 491–500 (2018).


    Google Scholar
     

  • Pahinkar, D. G. et al. Transient liquid phase bonding of AlN to AlSiC for durable power electronic packages. Adv. Eng. Mater. 20, 1800039 (2018).


    Google Scholar
     

  • Luechinger, C. et al. Aluminum–copper ribbon interconnects for power devices. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 1567–1577 (2017).


    Google Scholar
     

  • Lee, H., Smet, V. & Tummala, R. A review of SiC power module packaging technologies: challenges, advances, and emerging issues. IEEE J. Emerg. Sel. Top. Power Electron. 8, 239–255 (2020). Overview of the packaging technologies of SiC power modules.


    Google Scholar
     

  • Weidner, K., Kaspar, M. & Seliger, N. Planar interconnect technology for power module system integration. In IEEE Int. Conf. Integrated Power Electronics Systems (CIPS) 1–5 (2012).

  • Robles, E. et al. The role of power device technology in the electric vehicle powertrain. Int. J. Energy Res. 46, 22222–22265 (2022).


    Google Scholar
     

  • Chen, C., Luo, F. & Kang, Y. A review of SiC power module packaging: layout, material system and integration. CPSS Trans. Power Electron. Appl. 2, 170–186 (2017).


    Google Scholar
     

  • Gurpinar, E., Chowdhury, S., Ozpineci, B. & Fan, W. Graphite-embedded high-performance insulated metal substrate for wide-bandgap power modules. IEEE Trans. Power Electron. 36, 114–128 (2020).


    Google Scholar
     

  • Ahmed, H. E. et al. Optimization of thermal design of heat sinks: a review. Int. J. Heat Mass Transf. 118, 129–153 (2018).


    Google Scholar
     

  • Behrendt, S., Eisele, R., Scheibel, M. G. & Kaessner, S. Implementation of a new thermal path within the structure of inorganic encapsulated power modules. Microelectron. Reliab. 100–101, 113430 (2019).


    Google Scholar
     

  • Hosoi, T. et al. Performance and reliability improvement in SiC power MOSFETs by implementing AlON high-k gate dielectrics. In IEEE International Electron Devices Meeting (IEDM) 7.4.1–7.4.4 (IEEE, 2012).

  • Tang, S.-W. et al. High threshold voltage enhancement-mode regrown p-GaN gate HEMTs with a robust forward time-dependent gate breakdown stability. IEEE Electron. Dev. Lett. 43, 1625–1628 (2022).


    Google Scholar
     

  • Kumar, S. et al. 1.2 kV enhancement-mode p-GaN gate HEMTs on 200 mm engineered substrates. IEEE Electron. Dev. Lett. 45, 657–660 (2024).


    Google Scholar
     

  • Wang, Y. & Edmondson, J. Thermal Management for EV Power Electronics 2024–2034: Forecasts, Technologies, Markets, and Trends. IDTechEx https://www.idtechex.com/en/research-report/thermal-management-for-ev-power-electronics-2024-2034-forecasts-technologies-markets-and-trends/1000 (2024).

  • Al-Hmoud, A., Ismail, A. & Zhao, Y. A high-density 200-kW all Silicon Carbide three-phase inverter for traction applications. In IEEE Applied Power Electronics Conference and Exposition (APEC) 3143–3146 (IEEE, 2023).

  • NXP. EV Power Inverter Control Reference Design Gen 3 https://www.nxp.com/design/design-center/designs/ev-power-inverter-control-reference-design-gen-3:EV-POWEREVBHD2 (2023).

  • Stella, F. et al. Design and testing of an automotive compliant 800V 550 kVA SiC traction inverter with full-ceramic DC-link and EMI filter. In IEEE Energy Conversion Congress and Exposition (ECCE) 1–8 (IEEE, 2022).

  • Chen, Z. et al. An 800V/300 kW, 44 kW/L air-cooled SiC power electronics building block (PEBB). In IEEE Annual Conference of Industrial Electronics Society (IECON) 1–6 (IEEE, 2021).

  • VisIC Technologies. 800 V 100 kW Motor Inverter Reference Design https://visic-tech.com/100kw-motor-inverter-reference-design-for-800v-power-bus/ (2020).

  • Adamson, T. et al. An 800-V high-density traction inverter-electro-thermal characterization and low-inductance PCB bussing design. IEEE J. Emerg. Sel. Top. Power Electron. 10, 3013–3023 (2022).


    Google Scholar
     

  • Continental. High Performance Twin Power Module Inverter https://conti-engineering.com/wp-content/uploads/2020/05/High_Performance_Twin_Power_Module_Inverter_EN.pdf (2020).

  • Zhu, L., Bai, H., Brown, A. & Körner, A. An ultra-high gain current-fed universal auxiliary power module for 400V/800V electric vehicles. In IEEE Applied Power Electronics Conference and Exposition (APEC) 885–891 (IEEE, 2023).

  • Lee, D.-W., Youn, H.-S. & Kim, J.-K. Development of phase-shift full-bridge converter with integrated winding planar two-transformer for LDC. IEEE Trans. Transp. Electrif. 9, 1215–1226 (2023).


    Google Scholar
     

  • BorgWarner. Explore our Technologies Gen5 High Voltage DC/DC https://cdn.borgwarner.com/docs/default-source/defaultdocument-library/high-voltage-dc-dc-converter-product-sheet.pdf?sfvrsn=3027b23c_12 (2023).

  • Bel Fuse. 700DNC40-12 Down Converter https://www.belfuse.com/product-detail/power-solutions-custom-value-added-solutions-emobility-700dnc40-down-converter (2023).

  • Du, X., Diao, F., Zhao, Y., Uvodich, K. & Miljkovic, N. A high-density 5kW 800V to 48VDC/DC converter for vehicle applications. In IEEE Energy Conversion Congress and Exposition (ECCE) 1502–1506 (IEEE, 2021).

  • Sarnago, H., Lucía, Ó., Menzi, D. & Kolar, J. W. Single-/Three-Phase bidirectional EV on-board charger featuring full power/voltage range and cost-effective implementation. In IEEE Int. Conf. Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) 10227458 (IEEE, 2023).

  • Pham, P. H., Nabih, A., Wang, S. & Li, Q. 11-kW high-frequency high-density bidirectional OBC with PCB winding magnetic design. In IEEE Applied Power Electronics Conference and Exposition (APEC) 1176–1181 (IEEE, 2022).

  • Lee, S.-Y., Lee, W.-S., Lee, J.-Y. & Lee, I.-O. High-efficiency 11 kW bi-directional on-board charger for EVs. J. Power Electron. 22, 363–376 (2022).


    Google Scholar
     

  • Kim, H. et al. A single-stage electrolytic capacitor-less EV charger with single- and three-phase compatibility. IEEE Trans. Power Electron. 37, 6780–6791 (2022).


    Google Scholar
     

  • Lee, D.-W., Lee, B.-S., Ahn, J.-H., Kim, J.-Y. & Kim, J.-K. New combined OBC and LDC system for electric vehicles with 800 V battery. IEEE Trans. Ind. Electron. 69, 9938–9951 (2022).


    Google Scholar
     

  • Wei, C., Zhu, D., Xie, H., Liu, Y. & Shao, J. A SiC-based 22kW bi-directional CLLC resonant converter with flexible voltage gain control scheme for EV on-board charger. In PCIM Europe Digital Days; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management 1–7 (IEEE, 2020).

  • Ovartech. 22 kW EV On-board Charger https://www.ovartech.com/wp-content/uploads/2021/08/Ovartech-740V-22KW-OBC-Data-Sheet.pdf (2021).

  • Innoelectric. On-board Charger https://innolectric.ag/on-board-charger-2-2/?lang=en (2021).



  • Source

    Related Articles

    Back to top button