AI

A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis


  • Lakhani, N. A. et al. Total body skin examination for skin cancer screening among U.S. adults from 2000 to 2010. Prev. Med. 61, 75–80 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Skin cancer classification with deep learning: A systematic review. Front Oncol. 12, 893972 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, O. T. et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. Lancet Digit Health 4, e466–e476 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sangers, T. E. et al. Position statement of the EADV Artificial Intelligence (AI) Task Force on AI-assisted smartphone apps and web-based services for skin disease. J. Eur. Acad. Dermatol Venereol https://doi.org/10.1111/jdv.19521 (2023).

  • Whiting, P. F. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern Med. 155, 529 (2011).

    PubMed 

    Google Scholar
     

  • Cabitza, F. et al. The importance of being external. methodological insights for the external validation of machine learning models in medicine. Comput. Methods Prog. Biomed. 208, 106288 (2021).


    Google Scholar
     

  • Shung, D., Simonov, M., Gentry, M., Au, B. & Laine, L. Machine learning to predict outcomes in patients with acute gastrointestinal bleeding: A systematic review. Dig. Dis. Sci. 64, 2078–2087 (2019).

    PubMed 

    Google Scholar
     

  • Steyerberg, E. W. & Harrell, F. E. Prediction models need appropriate internal, internal–external, and external validation. J. Clin. Epidemiol. 69, 245–247 (2016).

    PubMed 

    Google Scholar
     

  • Piccolo, D. et al. Dermoscopic diagnosis by a trained clinician vs. a clinician with minimal dermoscopy training vs. computer-aided diagnosis of 341 pigmented skin lesions: a comparative study. Br. J. Dermatol 147, 481–486 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • The International Skin Imaging Collaboration. https://www.isic-archive.com/

  • Tschandl, P. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 14, 180161 (2018).


    Google Scholar
     

  • Friedman, R. J. et al. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch. Dermatol 144, 476–482 (2008).

    PubMed 

    Google Scholar
     

  • Marchetti, M. A. et al. Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J. Am. Acad. Dermatol 78, 270 (2018).

    PubMed 

    Google Scholar
     

  • Brinker, T. J. et al. Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark. Eur. J. Cancer 111, 30–37 (2019).

    PubMed 

    Google Scholar
     

  • Brinker, T. J. et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 119, 11–17 (2019).

    PubMed 

    Google Scholar
     

  • Maron, R. C. et al. Artificial intelligence and its effect on dermatologists’ accuracy in dermoscopic melanoma image classification: Web-based survey study. J. Med. Internet Res 22, e18091 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks. J. Eur. Acad. Dermatol Venereol. 34, 1842–1850 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Marchetti, M. A. et al. Computer algorithms show potential for improving dermatologists’ accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017. J. Am. Acad. Dermatol 82, 622–627 (2020).

    PubMed 

    Google Scholar
     

  • Fink, C. et al. Diagnostic performance of a deep learning convolutional neural network in the differentiation of combined naevi and melanomas. J. Eur. Acad. Dermatol Venereol. 34, 1355–1361 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Tognetti, L. et al. A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi. J. Dermatol Sci. 101, 115–122 (2021).

    PubMed 

    Google Scholar
     

  • Haenssle, H. A. et al. Man against machine reloaded: Performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions. Ann. Oncol. 31, 137–143 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pham, T. C., Luong, C. M., Hoang, V. D. & Doucet, A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci. Rep. 11, 17485 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Z. et al. Early melanoma diagnosis with sequential dermoscopic images. IEEE Trans. Med. Imaging 41, 633–646 (2022).

    PubMed 

    Google Scholar
     

  • Ferris, L. K. et al. Computer-aided classification of melanocytic lesions using dermoscopic images. J. Am. Acad. Dermatol 73, 769–776 (2015).

    PubMed 

    Google Scholar
     

  • Tschandl, P., Kittler, H. & Argenziano, G. A pretrained neural network shows similar diagnostic accuracy to medical students in categorizing dermatoscopic images after comparable training conditions. Br. J. Dermatol. 177, 867–869 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Yu, C. et al. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS One 13, e0193321 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, M. et al. Assessment of accuracy of an artificial intelligence algorithm to detect melanoma in images of skin lesions. JAMA Netw. Open 2, e1913436 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dreiseitl, S., Binder, M., Hable, K. & Kittler, H. Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res. 19, 180–184 (2009).

    PubMed 

    Google Scholar
     

  • Winkler, J. K. et al. Monitoring patients at risk for melanoma: May convolutional neural networks replace the strategy of sequential digital dermoscopy? Eur. J. Cancer 160, 180–188 (2022).

    PubMed 

    Google Scholar
     

  • Tschandl, P. et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 20, 938–947 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minagawa, A. et al. Dermoscopic diagnostic performance of Japanese dermatologists for skin tumors differs by patient origin: A deep learning convolutional neural network closes the gap. J. Dermatol 48, 232–236 (2021).

    PubMed 

    Google Scholar
     

  • Tschandl, P. et al. Human-computer collaboration for skin cancer recognition. Nat. Med. 26, 1229–1234 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Combalia, M. et al. Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge. Lancet Digit Health 4, e330–e339 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. Q. et al. Deep learning-based, computer-aided classifier developed with dermoscopic images shows comparable performance to 164 dermatologists in cutaneous disease diagnosis in the Chinese population. Chin. Med. J. (Engl.) 133, 2027–2036 (2020).

    PubMed 

    Google Scholar
     

  • Lucius, M. et al. Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics (Basel) 10, 969 (2020).

    PubMed 

    Google Scholar
     

  • Zhu, C. Y. et al. A deep learning based framework for diagnosing multiple skin diseases in a clinical environment. Front Med. (Lausanne) 8, 626369 (2021).

    PubMed 

    Google Scholar
     

  • Van Molle, P. et al. The value of measuring uncertainty in neural networks in dermoscopy. J. Am. Acad. Dermatol 87, 1191–1193 (2022).

    PubMed 

    Google Scholar
     

  • Hekler, A. et al. Superior skin cancer classification by the combination of human and artificial intelligence. Eur. J. Cancer 120, 114–121 (2019).

    PubMed 

    Google Scholar
     

  • Maron, R. C. et al. Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur. J. Cancer 119, 57–65 (2019).

    PubMed 

    Google Scholar
     

  • Winkler, J. K. et al. Collective human intelligence outperforms artificial intelligence in a skin lesion classification task. J. Dtsch Dermatol Ges. 19, 1178–1184 (2021).

    PubMed 

    Google Scholar
     

  • Ba, W. et al. Convolutional neural network assistance significantly improves dermatologists’ diagnosis of cutaneous tumours using clinical images. Eur. J. Cancer 169, 156–165 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, S. S. et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J. Investig. Dermatol. 138, 1529–1538 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Fujisawa, Y. et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 180, 373–381 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, S. S. et al. Keratinocytic skin cancer detection on the face using region-based convolutional neural network. JAMA Dermatol 156, 29–37 (2020).

    PubMed 

    Google Scholar
     

  • Huang, K. et al. Assistant diagnosis of basal cell carcinoma and seborrheic keratosis in Chinese population using convolutional neural network. J. Health. Eng. 2020, 1713904 (2020).


    Google Scholar
     

  • Polesie, S. et al. Discrimination between invasive and in situ melanomas using clinical close-up images and a de novo convolutional neural network. Front Med (Lausanne) 8, 723914 (2021).

    PubMed 

    Google Scholar
     

  • Chang, W. Y. et al. Computer-aided diagnosis of skin lesions using conventional digital photography: A reliability and feasibility study. PLoS One 8, e76212 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. Y. et al. The application of deep learning in the risk grading of skin tumors for patients using clinical images. J. Med. Syst. 43, 283 (2019).

    PubMed 

    Google Scholar
     

  • Pangti, R. et al. Performance of a deep learning-based application for the diagnosis of basal cell carcinoma in Indian patients as compared to dermatologists and nondermatologists. Int J. Dermatol 60, e51–e52 (2021).

    PubMed 

    Google Scholar
     

  • Agarwala, S., Mata, D. A. & Hafeez, F. Accuracy of a convolutional neural network for dermatological diagnosis of tumours and skin lesions in a clinical setting. Clin. Exp. Dermatol 46, 1310–1311 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. J. et al. Augmenting the accuracy of trainee doctors in diagnosing skin lesions suspected of skin neoplasms in a real-world setting: A prospective controlled before-and-after study. PLoS One 17, e0260895 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. S. et al. Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study. PLoS Med. 17, e1003381 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. S. et al. Augmented intelligence dermatology: Deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. J. Investig. Dermatol. 140, 1753–1761 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jinnai, S. et al. The development of a skin cancer classification system for pigmented skin lesions using deep learning. Biomolecules 10, 1–13 (2020).


    Google Scholar
     

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tschandl, P. et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol 155, 58–65 (2019).

    PubMed 

    Google Scholar
     

  • Haenssle, H. A. et al. Man against Machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Brinker, T. J. et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur. J. Cancer 111, 148–154 (2019).

    PubMed 

    Google Scholar
     

  • Li, C. X. et al. Diagnostic capacity of skin tumor artificial intelligence-assisted decision-making software in real-world clinical settings. Chin. Med. J. (Engl.) 133, 2020–2026 (2020).

    PubMed 

    Google Scholar
     

  • Willingham, M. L. et al. The potential of using artificial intelligence to improve skin cancer diagnoses in Hawai’i’s multiethnic population. Melanoma Res. 31, 504–514 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, K. et al. The classification of six common skin diseases based on xiangya-derm: Development of a chinese database for artificial intelligence. J. Med. Internet Res 23, e26025 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, S. S. et al. Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms: a single-center, paralleled, unmasked, randomized controlled trial. J. Invest Dermatol 142, 2353–2362.e2 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Muñoz‐López, C. et al. Performance of a deep neural network in teledermatology: A single‐centre prospective diagnostic study. J. Eur. Acad. Dermatol. Venereol. 35, 546–553 (2021).

    PubMed 

    Google Scholar
     

  • Han, S. S. et al. The degradation of performance of a state-of-the-art skin image classifier when applied to patient-driven internet search. Sci. Rep. 12, 16260 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 1, e271–e297 (2019).

    PubMed 

    Google Scholar
     

  • Haggenmuller, S. et al. Skin cancer classification via convolutional neural networks: Systematic review of studies involving human experts. Eur. J. Cancer 156, 202–216 (2021).

    PubMed 

    Google Scholar
     

  • Takiddin, A., Schneider, J., Yang, Y., Abd-Alrazaq, A. & Househ, M. Artificial intelligence for skin cancer detection: Scoping review. J. Med. Internet Res. 23, e22934 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinker, T. J. et al. Skin cancer classification using convolutional neural networks: Systematic review. J. Med. Internet Res. 20, e11936 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marka, A., Carter, J. B., Toto, E. & Hassanpour, S. Automated detection of nonmelanoma skin cancer using digital images: A systematic review. BMC Med. Imaging 19, 21 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, K. et al. Characterizing the clinical adoption of medical AI devices through U.S. insurance claims. NEJM AI https://doi.org/10.1056/AIoa2300030 (2023).

  • Navarrete-Dechent, C. et al. Automated dermatological diagnosis: Hype or reality? J. Investig. Dermatol. 138, 2277–2279 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Navarrete-Dechent, C., Liopyris, K. & Marchetti, M. A. Multiclass artificial intelligence in dermatology: Progress but still room for improvement. J. Investig. Dermatol. 141, 1325–1328 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Adamson, A. S. & Smith, A. Machine learning and health care disparities in dermatology. JAMA Dermatol 154, 1247–1248 (2018).

    PubMed 

    Google Scholar
     

  • Daneshjou, R., Smith, M. P., Sun, M. D., Rotemberg, V. & Zou, J. Lack of transparency and potential bias in artificial intelligence data sets and algorithms: A scoping review. JAMA Dermatol 157, 1362–1369 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jobson, D., Mar, V. & Freckelton, I. Legal and ethical considerations of artificial intelligence in skin cancer diagnosis. Australas. J. Dermatol 63, e1–e5 (2022).

    PubMed 

    Google Scholar
     

  • Daneshjou, R. et al. Checklist for evaluation of image-based artificial intelligence reports in dermatology: CLEAR derm consensus guidelines from the international skin imaging collaboration artificial intelligence working group. JAMA Dermatol 158, 90–96 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenenhaus, A. et al. Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled conditions. Skin Res. Technol. 16, 85–97 (2010).

    PubMed 

    Google Scholar
     

  • Brinker, T. et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 113, 47–54 (2019).

    PubMed 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button