AI

Artificial intelligence to predict soil temperatures by development of novel model


  • Kannojia, P., Sharma, P. & Sharma, K. Climate Change and Agricultural Ecosystems 43–64 (Elsevier, 2019).


    Google Scholar
     

  • Yang, T., Lupwayi, N., Marc, S.-A., Siddique, K. H. & Bainard, L. D. Anthropogenic drivers of soil microbial communities and impacts on soil biological functions in agroecosystems. Glob. Ecol. Conserv. 27, e01521 (2021).


    Google Scholar
     

  • Frouz, J. Climate Change and Soil Interactions 1–19 (Elsevier, 2020).


    Google Scholar
     

  • Li, M., Wu, P. & Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol. 40, 5744–5766 (2020).


    Google Scholar
     

  • Zhang, L. et al. Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma 337, 1105–1115 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Du, P., Xu, M. & Li, R. Impacts of climate change on water resources in the major countries along the belt and road. PeerJ 9, e12201 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zabihi, N. & Saafi, M. Recent developments in the energy harvesting systems from road infrastructures. Sustainability 12, 6738 (2020).

    CAS 

    Google Scholar
     

  • Yadav, S. S., Hegde, V., Habibi, A. B., Dia, M. & Verma, S. Climate change agriculture and food security. In Food Security and Climate Change 1st edn (eds Yadav, S. S., Redden, R. J., Hatfield, J. L. et al.) (Wiley, 2019).


    Google Scholar
     

  • Dwevedi, A. et al. New Pesticides and Soil Sensors 561–594 (Elsevier, 2017).


    Google Scholar
     

  • Chatterjee, A. et al. Temperature sensitivity of nitrogen dynamics of agricultural soils of the United States. Open J. Soil Sci. 10, 298–305 (2020).

    CAS 

    Google Scholar
     

  • Jeong, S. H., Eom, J.-Y., Park, J. Y., Chun, J. H. & Lee, J. S. Effect of precipitation on soil respiration in a temperate broad-leaved forest. J. Ecol. Environ. 42, 1–8 (2018).


    Google Scholar
     

  • Wu, T., Hao, S. & Kang, L. Effects of soil temperature and moisture on the development and survival of grasshopper eggs in inner mongolian grasslands. Front. Ecol. Evol. 9, 727911 (2021).


    Google Scholar
     

  • Xu, C., Qu, J. J., Hao, X., Zhu, Z. & Gutenberg, L. Surface soil temperature seasonal variation estimation in a forested area using combined satellite observations and in-situ measurements. Int. J. Appl. Earth Obs. Geoinf. 91, 102156 (2020).


    Google Scholar
     

  • Zheng, Y. et al. Climatic factors have unexpectedly strong impacts on soil bacterial β-diversity in 12 forest ecosystems. Soil Biol. Biochem. 142, 107699 (2020).

    CAS 

    Google Scholar
     

  • Azizi-Rad, M., Guggenberger, G., Ma, Y. & Sierra, C. A. Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biol. Biochem. 165, 108488 (2022).

    CAS 

    Google Scholar
     

  • Yang, Y. et al. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biol. Biochem. 174, 108814 (2022).

    CAS 

    Google Scholar
     

  • Xu, S., Sheng, C. & Tian, C. Changing soil carbon: Influencing factors, sequestration strategy and research direction. Carbon Balance Manag. 15, 2 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, P. K., Banerjee, S., Nath, R. & Samanta, S. Assessing congenial soil temperature and its impact on root growth, grain yield of summer rice under varying water stress condition in lower gangetic plain of India. J. Saudi Soc. Agric. Sci. 21, 98–107 (2022).


    Google Scholar
     

  • Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: The what, the how, and the why. New Phytol. 232, 25–41 (2021).

    PubMed 

    Google Scholar
     

  • Burger, D., Bauke, S., Amelung, W. & Sommer, M. Fast agricultural topsoil re-formation after complete topsoil loss–evidence from a unique historical field experiment. Geoderma 434, 116492 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Alizamir, M. et al. Development of a robust daily soil temperature estimation in semi-arid continental climate using meteorological predictors based on computational intelligent paradigms. PLoS ONE 18, e0293751 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiao, M. et al. Spatiotemporal variations of soil temperature at 10 and 50 cm depths in permafrost regions along the Qinghai-Tibet engineering corridor. Remote Sens. 15, 455 (2023).

    ADS 

    Google Scholar
     

  • Bekhzod, A. et al. Present state of pasture types of the central kyzylkum. Am. J. Plant Sci. 7, 677 (2016).


    Google Scholar
     

  • Juraev, Z. MDPI Preprint Water Security. Authorea. (2023).

  • Khasanov, S. et al. Impact assessment of soil salinity on crop production in Uzbekistan and its global significance. Agric. Ecosyst. Environ. 342, 108262 (2023).

    CAS 

    Google Scholar
     

  • Khamidov, M., Ishchanov, J., Hamidov, A., Donmez, C. & Djumaboev, K. Assessment of soil salinity changes under the climate change in the Khorezm region, Uzbekistan. Int. J. Environ. Res. Public Health 19, 8794 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rengasamy P. Oxford Research Encyclopedia of Environmental Science. (2016).

  • Liu, Z. et al. Water balance analysis based on a quantitative evapotranspiration inversion in the Nukus irrigation area Lower Amu River Basin. Remote Sens. 12, 2317 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Lubin, N. Environmental Resources and Constraints in the Former Soviet Republics 289–306 (Routledge, 2019).


    Google Scholar
     

  • Rakhmatullaev, S., Huneau, F., Le Coustumer, P. & Motelica-Heino, M. 2011 Sustainable irrigated agricultural production of countries in economic transition: Challenges and opportunities (a case study of Uzbekistan, Central Asia). Agric. Prod.. 139–161. https://insu.hal.science/insu-00460453 (2011).

  • Orazaliev, K., Mukasheva, A., Ybyray, N. & Nurekeshov, T. Current regulation of water relations in Central Asia. Reg. Sci. Policy Pract., 100038. https://eabr.org/en/analytics/special-reports/regulation-of-the-water-and-energy-complex-of-central-asia/ (2024).

  • Biazar, S. M., Shehadeh, H. A., Ghorbani, M. A., Golmohammadi, G. & Saha, A. Soil temperature forecasting using a hybrid artificial neural network in florida subtropical Grazinglands agro-ecosystems. Sci. Rep. 14, 1535 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ali, S. et al. Explainable artificial intelligence (XAI): What we know and what is left to attain trustworthy artificial intelligence. Inf. Fusion 99, 101805 (2023).


    Google Scholar
     

  • Imanian, H., Shirkhani, H., Mohammadian, A., Hiedra Cobo, J. & Payeur, P. Spatial interpolation of soil temperature and water content in the land-water interface using artificial intelligence. Water 15, 473 (2023).


    Google Scholar
     

  • Talsma, C. J., Solander, K. C., Mudunuru, M. K., Crawford, B. & Powell, M. R. Frost prediction using machine learning and deep neural network models. Front. Artif. Intell. 5, 963781 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meddage, P. et al. Interpretation of machine-learning-based (black-box) wind pressure predictions for low-rise gable-roofed buildings using Shapley additive explanations (SHAP). Buildings 12, 734 (2022).


    Google Scholar
     

  • Mampitiya, L., Rathnayake, N., Hoshino, Y. & Rathnayake, U. Performance of machine learning models to forecast PM10 levels. MethodsX 12, 102557 (2024).

    CAS 

    Google Scholar
     

  • Kujawska, J., Kulisz, M., Oleszczuk, P. & Cel, W. Machine learning methods to forecast the concentration of PM10 in lublin Poland. Energies 15, 6428 (2022).

    CAS 

    Google Scholar
     

  • Moharm, K., Eltahan, M. & Elsaadany, E. In 2020 International Conference on Smart Grids and Energy Systems (SGES), 922–927 (IEEE, 2020).

  • Mampitiya, L. et al. Machine learning techniques to predict the air quality using meteorological data in two urban areas in Sri Lanka. Environments 10, 141 (2023).


    Google Scholar
     

  • Narisetty, N. N. Handbook of Statistics 207–248 (Elsevier, 2020).


    Google Scholar
     

  • Liu, W. & Li, Q. An efficient elastic net with regression coefficients method for variable selection of spectrum data. PLoS ONE 12, e0171122 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, J. M., Basto, M. & Da Silva, A. F. The logistic lasso and ridge regression in predicting corporate failure. Proced. Econ. Finance 39, 634–641 (2016).


    Google Scholar
     

  • Mampitiya, L., Rathnayake, N., Hoshino, Y. & Rathnayake, U. Forecasting PM10 levels in Sri Lanka: A comparative analysis of machine learning models PM10. J. Hazard. Mater. Adv. 13, 100395 (2024).

    CAS 

    Google Scholar
     

  • Imanian, H., Hiedra Cobo, J., Payeur, P., Shirkhani, H. & Mohammadian, A. A comprehensive study of artificial intelligence applications for soil temperature prediction in ordinary climate conditions and extremely hot events. Sustainability 14, 8065 (2022).


    Google Scholar
     

  • Ozturk, M., Salman, O. & Koc, M. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 91, 551–562 (2011).


    Google Scholar
     

  • Chathuranika, I., Khaniya, B., Neupane, K., Rustamjonovich, K. M. & Rathnayake, U. Implementation of water-saving agro-technologies and irrigation methods in agriculture of Uzbekistan on a large scale as an urgent issue. Sustain. Water Resour. Manag. 8, 155 (2022).


    Google Scholar
     

  • Komariah, et al. The effects of soil temperature from soil mulching and harvest age on phenol, flavonoid and antioxidant contents of java tea (Orthosiphon aristatus B.). Chem. Biol. Technol. Agric. 8, 1–13 (2021).


    Google Scholar
     

  • Szczerba, A. et al. Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy 11, 800 (2021).

    CAS 

    Google Scholar
     

  • Liu, P., Xia, Y. & Shang, M. A bench-scale assessment of the effect of soil temperature on bare soil evaporation in winter. Hydrol. Res. 51, 1349–1357 (2020).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau. Sci. Rep. 12, 19746 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azamathulla, H. M., Rathnayake, U. & Shatnawi, A. Gene expression programming and artificial neural network to estimate atmospheric temperature in Tabuk Saudi Arabia. Appl. Water Sci. 8(184), 1–7 (2018).

    ADS 

    Google Scholar
     

  • Perera, A. et al. Recent climatic trends in Trinidad and Tobago, West Indies. Asia-Pac. J. Sci. Technol. 25(2), 1–11 (2020).


    Google Scholar
     



  • Source

    Related Articles

    Back to top button