AI

Estimating the energy consumption for residential buildings in semiarid and arid desert climate using artificial intelligence


  • Elbeltagi, E., Wefki, H. & Khallaf, R. Sustainable building optimization model for early-stage design. Buildings 13(1), 74 (2022).

    Article 

    Google Scholar
     

  • Das, S., Swetapadma, A., Panigrahi, C. & Abdelaziz, A. Y. Improved method for approximation of heating and cooling load in urban buildings for energy performance enhancement. Electr. Power Comp. Syst. 48(4–5), 436–446 (2020).

    Article 

    Google Scholar
     

  • El-Sayed, A. H. A., Khalil, A. & Yehia, M. Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis. Energy 266, 126615 (2023).

    Article 

    Google Scholar
     

  • Seyedzadeh, S., Rahimian, F. P., Glesk, I. & Roper, M. Machine learning for estimation of building energy consumption and performance: A review. Visual. Eng. 6, 1–20 (2018).

    Article 

    Google Scholar
     

  • IEA International Energy Agency. Key World Energy Statistics (IEA, 2015).


    Google Scholar
     

  • Swan, L. G. & Ugursal, V. I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 13, 1819–1835 (2009).

    Article 

    Google Scholar
     

  • Mui, K. W., Satheesan, M. K. & Wong, L. T. Building cooling energy consumption prediction with a hybrid simulation Approach: Generalization beyond the training range. Energy Build. 276, 112502 (2022).

    Article 

    Google Scholar
     

  • Al-Shargabi, A. A., Almhafdy, A., Ibrahim, D. M., Alghieth, M. & Chiclana, F. Buildings’ energy consumption prediction models based on buildings’ characteristics: Research trends, taxonomy, and performance measures. J. Build. Eng. 54, 104577 (2022).

    Article 

    Google Scholar
     

  • Ilbeigi, M., Ghomeishi, M. & Dehghanbanadaki, A. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm. Sustain. Cities Soc. 61, 102325 (2020).

    Article 

    Google Scholar
     

  • Amasyali, K. & El-Gohary, N. M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018).

    Article 

    Google Scholar
     

  • Mansour, D. M. & Ebid, A. M. Modeling of heat transfer in massive concrete foundations using 3D-FDM. Civ. Eng. J. 9(10), 2430–2444 (2023).

    Article 

    Google Scholar
     

  • Mansour, D. M. & Ebid, A. M. Predicting thermal behavior of mass concrete elements using 3D finite difference model. Asian J. Civ. Eng. 25(2), 1601–1611 (2024).

    Article 

    Google Scholar
     

  • Elbeltagi, E., Wefki, H., Abdrabou, S., Dawood, M. & Ramzy, A. Visualized strategy for predicting buildings energy consumption during early design stage using parametric analysis. J. Build. Eng. 13, 127–136 (2017).

    Article 

    Google Scholar
     

  • Welle, B., Haymaker, J. & Rogers, Z. ThermalOpt: A methodology for automated BIM-based multidisciplinary thermal simulation for use in optimization environments. Build. Simul. 4, 293–313 (2013).

    Article 

    Google Scholar
     

  • Biswas, M. R., Robinson, M. D. & Fumo, N. Prediction of residential building energy consumption: A neural network approach. Energy 117, 84–92 (2016).

    Article 

    Google Scholar
     

  • Castelli, M., Trujillo, L., Vanneschi, L. & Popovič, A. Prediction of energy performance of residential buildings: A genetic programming approach. Energy Build. 102, 67–74. https://doi.org/10.1016/j.enbuild.2015.05.01310.1016/j.enbuild.2015.05.013 (2015).

    Article 

    Google Scholar
     

  • Tahmassebi, A. & Gandomi, A. H. Building energy consumption forecast using multi-objective genetic programming. Measurement 118, 164–171 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mat Daut, M. A. et al. Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review. Renew. Sustain. Energy Rev. 70, 1108–1118. https://doi.org/10.1016/j.rser.2016.12.015 (2017).

    Article 

    Google Scholar
     

  • Yazici, I., Beyca, O. F. & Delen, D. Deep-learning-based short-term electricity load forecasting: A real case application. Eng. Appl. Artif. Intell. 109, 104645 (2022).

    Article 

    Google Scholar
     

  • Jamei, M. et al. Estimating the density of hybrid nanofluids for thermal energy application: Application of non-parametric and evolutionary polynomial regression data-intelligent techniques. Measurement 189, 110524 (2022).

    Article 

    Google Scholar
     

  • Yin, Z.-Y. & Jin, Y.-F. Optimization-based evolutionary polynomial regression. Pract. Optim. Theory Geotech. Eng. https://doi.org/10.1007/978-981-13-3408-5_5 (2019).

    Article 

    Google Scholar
     

  • Khan, S. U. et al. Towards intelligent building energy management: AI-based framework for power consumption and generation forecasting. Energy Build. 279, 112705 (2023).

    Article 

    Google Scholar
     

  • Runge, J. & Saloux, E. A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system. Energy 269, 126661 (2023).

    Article 

    Google Scholar
     

  • Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F. & Ajayi, S. Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques. J. Build. Eng. 45, 103406 (2022).

    Article 

    Google Scholar
     

  • Yang, W. et al. A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior. Appl. Energy 307, 118197 (2022).

    Article 

    Google Scholar
     

  • Li, X. & Yao, R. Modelling heating and cooling energy demand for building stock using a hybrid approach. Energy Build. 235, 110740 (2021).

    Article 

    Google Scholar
     

  • Zou, Y., Xiang, K., Zhan, Q. & Li, Z. A simulation-based method to predict the life cycle energy performance of residential buildings in different climate zones of China. Build. Environ. 193, 107663 (2021).

    Article 

    Google Scholar
     

  • D’Amico, A., Ciulla, G., Traverso, M., Brano, V. L. & Palumbo, E. Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study. J. Clean. Prod. 239, 117993 (2019).

    Article 

    Google Scholar
     

  • Mohammadi, M., Talebpour, F., Safaee, E., Ghadimi, N. & Abedinia, O. Small-scale building load forecast based on hybrid forecast engine. Neural Process. Lett. 48, 329–351 (2018).

    Article 

    Google Scholar
     

  • Ullah, I., Ahmad, R. & Kim, D. A prediction mechanism of energy consumption in residential buildings using hidden Markov model. Energies 11(2), 358 (2018).

    Article 

    Google Scholar
     

  • Fayaz, M. & Kim, D. A prediction methodology of energy consumption based on deep extreme learning machine and comparative analysis in residential buildings. Electronics 7(10), 222 (2018).

    Article 

    Google Scholar
     

  • Ascione, F., Bianco, N., De Stasio, C., Mauro, G. M. & Vanoli, G. P. Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach. Energy 118, 999–1017 (2017).

    Article 

    Google Scholar
     

  • Mocanu, E., Nguyen, P. H., Gibescu, M. & Kling, W. L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 6, 91–99 (2016).

    Article 

    Google Scholar
     

  • Samuelson, H., Claussnitzer, S., Goyal, A., Chen, Y. & Romo-Castillo, A. Parametric energy simulation in early design: High-rise residential buildings in urban contexts. Build. Environ. 101, 19–31 (2016).

    Article 

    Google Scholar
     

  • Fumo, N. & Biswas, M. R. Regression analysis for prediction of residential energy consumption. Renew. Sustain. Energy Rev. 47, 332–343 (2015).

    Article 

    Google Scholar
     

  • Fan, C., Xiao, F. & Wang, S. Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques. Appl. Energy 127, 1–10 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Elbeltagi, E. & Wefki, H. Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Rep. 7, 2534–2545 (2021).

    Article 

    Google Scholar
     

  • Elhabyb, K., Baina, A., Bellafkih, K. & Deifalla, A. F. Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings. Int. J. Energ. Res. 2024, 1–19. https://doi.org/10.1155/2024/6812425 (2014).



  • Source

    Related Articles

    Back to top button