AI

Leveraging edge artificial intelligence for sustainable agriculture


  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article 
    CAS 

    Google Scholar
     

  • The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction (FAO, 2019).

  • Chhogyel, N. & Kumar, L. Climate change and potential impacts on agriculture in Bhutan: a discussion of pertinent issues. Agric. Food Secur. 7, 79 (2018).

    Article 

    Google Scholar
     

  • Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Muluneh, M. G. Impact of climate change on biodiversity and food security: a global perspective—a review article. Agric. Food Secur. 10, 36 (2021).

    Article 

    Google Scholar
     

  • What is agrobiodiversity? FAO https://www.fao.org/fileadmin/templates/soilbiodiversity/Downloadable_files/agrobiodivesity.pdf (2004).

  • Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur. 3, 92–98 (2014).

    Article 

    Google Scholar
     

  • UN-Water Blueprint for Acceleration: Sustainable Development Goal 6 Synthesis Report on Water and Sanitation 2023 (United Nations Publications, 2023).

  • Rosa, L. et al. Energy implications of the 21st century agrarian transition. Nat. Commun. 12, 2319 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Giller, K. E. et al. The future of farming: who will produce our food? Food Secur. 13, 1073–1099 (2021).

    Article 

    Google Scholar
     

  • Raymond, C. et al. Increasing spatiotemporal proximity of heat and precipitation extremes in a warming world quantified by a large model ensemble. Environ. Res. Lett. 17, 035005 (2022).

    Article 

    Google Scholar
     

  • White, K., Habib, R. & Hardisty, D. J. How to SHIFT consumer behaviors to be more sustainable: a literature review and guiding framework. J. Mark. 83, 22–49 (2019).

    Article 

    Google Scholar
     

  • Hallak, R., Onur, I. & Lee, C. Consumer demand for healthy beverages in the hospitality industry: examining willingness to pay a premium, and barriers to purchase. PLoS ONE 17, e0267726 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. II & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).

    Article 

    Google Scholar
     

  • Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article 

    Google Scholar
     

  • Vial, G. Understanding digital transformation: a review and a research agenda. J. Strat. Inf. Syst. 28, 118–144 (2019).

    Article 

    Google Scholar
     

  • Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V. & Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 119, 104926 (2020).

    Article 

    Google Scholar
     

  • Yamakami, T. An experimental implementation of an edge-based AI engine with edge-cloud coordination. In 2018 18th International Symposium on Communications and Information Technologies (ISCIT) 442–446 (IEEE, 2018).

  • McCarthy, J. Programs with common sense. In Proc. Teddington Conference on the Mechanization of Thought Processes 75–91 (Her Majesty’s Stationary Office, 1959).

  • Samuel, A. L. Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959).

    Article 

    Google Scholar
     

  • Dechter, R. Learning while searching in constraint-satisfaction-problems. In Proc. Fifth AAAI National Conference on Artificial Intelligence 178–183 (AAAI Press, 1986).

  • Liu, X. et al. RENO: a high-efficient reconfigurable neuromorphic computing accelerator design. In Proc. 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) 1–6 (2015).

  • Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12, 106–122 (2018).

    Article 

    Google Scholar
     

  • Akopyan, F. et al. TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34, 1537–1557 (2015).

    Article 

    Google Scholar
     

  • Davies, M. E. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article 

    Google Scholar
     

  • Frenkel, C., Legat, J. D. & Bol, D. MorphIC: a 65-nm 738k-synapse/mm2 quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning. IEEE Trans. Biomed. Circuits Syst. 13, 999–1010 (2019).

    Article 

    Google Scholar
     

  • Gebregiorgis, A. et al. Tutorial on memristor-based computing for smart edge applications. Memories 4, 100025 (2023).


    Google Scholar
     

  • Brown, T. B. et al. Language models are few-shot learners. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 1877–1901 (Curran Associates, 2020).

  • Patterson, D. et al. The carbon footprint of machine learning training will plateau, then shrink. In Computer Vol. 55, 18–28 (IEEE Computer Society, 2022).

  • Hamdioui, S. et al. Memristor for computing: myth or reality? In Design, Automation & Test in Europe Conference & Exhibition (DATE) 722–731 (IEEE, 2017).

  • Singh, A. et al. Low-power memristor-based computing for edge-AI applications. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE 2021).

  • Singh, A. et al. CIM-based robust logic accelerator using 28 nm STT-MRAM characterization chip tape-out. In Proc. IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS) 1–5 (IEEE, 2022).

  • Xu, Y. et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation https://doi.org/10.1016/j.xinn.2021.100179 (2021).

  • Leroux, S., Simoens, P., Lootus, M., Thakore, K. & Sharma, A. TinyMLOps: operational challenges for widespread edge AI adoption. In Proc. IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) 1003–1010 (IEEE, 2022).

  • Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H. & Pasupuleti, V. R. A critical review on computer vision and artificial intelligence in food industry. J. Agric. Food Res. 2, 100033 (2020).


    Google Scholar
     

  • Ninomiya, S. High-throughput field crop phenotyping: current status and challenges. Breed. Sci. 72, 3–18 (2022).

    Article 

    Google Scholar
     

  • Cisternas, I., Velásquez, I., Caro, A. & Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 176, 105626 (2020).

    Article 

    Google Scholar
     

  • Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pérez-Ruíz, M., Slaughter, D. C., Fathallah, F. A., Gliever, C. J. & Miller, B. J. Co-robotic intra-row weed control system. Biosyst. Eng. 126, 45–55 (2014).

    Article 

    Google Scholar
     

  • Gázquez, J. A., Castellano, N. N. & Manzano-Agugliaro, F. Intelligent low cost telecontrol system for agricultural vehicles in harmful environments. J. Clean. Prod. 113, 204–215 (2016).

    Article 

    Google Scholar
     

  • Akhavizadegan, F., Ansarifar, J., Wang, L., Huber, I. & Archontoulis, S. V. A time-dependent parameter estimation framework for crop modeling. Sci. Rep. 11, 11437 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).

    Article 

    Google Scholar
     

  • Bock, C. H., Barbedo, J. G. A., Del Ponte, E. M., Bohnenkamp, D. & Mahlein, A.-K. From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy. Phytopathol. Res. 2, 9 (2020).

    Article 

    Google Scholar
     

  • Dandrifosse, S., Bouvry, A., Leemans, V., Dumont, B. & Mercatoris, B. Imaging wheat canopy through stereo vision: overcoming the challenges of the laboratory to field transition for morphological features extraction. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.00096 (2020).

  • Ye, Y., Bruzzone, L., Shan, J., Bovolo, F. & Zhu, Q. Fast and robust matching for multimodal remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 57, 9059–9070 (2019).

    Article 

    Google Scholar
     

  • Carlier, A., Dandrifosse, S., Dumont, B. & Mercatoris, B. Comparing CNNs and PLSr for estimating wheat organs biophysical variables using proximal sensing. Front. Plant Sci. https://doi.org/10.3389/fpls.2023.1204791 (2023).

  • Raj, M. et al. A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0. J. Netw. Comput. Appl. 187, 103107 (2021).

    Article 

    Google Scholar
     

  • Tardaguila, J., Stoll, M., Gutiérrez, S., Proffitt, T. & Diago, M. P. Smart applications and digital technologies in viticulture: a review. Smart Agric. Technol. 1, 100005 (2021).

    Article 

    Google Scholar
     

  • Khanna, A. & Kaur, S. Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Comput. Electron. Agric. 157, 218–231 (2019).

    Article 

    Google Scholar
     

  • Bao, J. & Xie, Q. Artificial intelligence in animal farming: a systematic literature review. J. Clean. Prod. 331, 129956 (2022).

    Article 

    Google Scholar
     

  • Yépez-Ponce, D. F., Salcedo, J. V., Rosero-Montalvo, P. D. & Sanchis, J. Mobile robotics in smart farming: current trends and applications. Front. Artif. Intell. https://doi.org/10.3389/frai.2023.1213330 (2023).

  • Duong, L. N. K. et al. A review of robotics and autonomous systems in the food industry: from the supply chains perspective. Trends Food Sci. Technol. 106, 355–364 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Food robotics: global market unit volume 2020–2030. Statista https://www.statista.com/statistics/1290022/food-robotics-global-market-unit-volume/ (2022).

  • Zhou, Z. et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762 (2019).

    Article 

    Google Scholar
     

  • Lin, Y. H. et al. Performance impacts of inalog ReRAM non-ideality on neuromorphic computing. IEEE Trans. Electron Devices 66, 1289–1295 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mohanan, V., Budiarto, R. & Aldmour, I. Powering the Internet of Things with 5G Networks (IGI Global, 2017).

  • Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 4, 104–109 (2022).

    Article 

    Google Scholar
     

  • Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article 

    Google Scholar
     

  • Silvestro, D., Goria, S., Sterner, T. & Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 5, 415–424 (2022).

    Article 

    Google Scholar
     

  • Deichmann, U., Goyal, A. & Mishra, D. Will digital technologies transform agriculture in developing countries? Agr. Econ. 47, 21–33 (2016).

    Article 

    Google Scholar
     

  • Blount-Dorn, K., Detroit Food Policy Council and Lindsey Scalera, Ecology Center Modeling an Equitable Michigan Food System (Michigan State Univ., 2018); https://www.canr.msu.edu/news/modeling-an-equitable-michigan-food-system



  • Source

    Related Articles

    Back to top button