Robotic wireless capsule endoscopy: recent advances and upcoming technologies
Basar, M. R., Malek, F., Juni, K. M., Idris, M. S. & Saleh, M. I. M. Ingestible Wireless Capsule Technology: A Review of Development and Future Indication. Int. J. Antennas Propag. 2012, 807165 (2012).
Liu, L., Towfighian, S. & Hila, A. A Review of Locomotion Systems for Capsule Endoscopy. IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
Alam, M. W., Hasan, M. M., Mohammed, S. K., Deeba, F. & Wahid, K. A. Are Current Advances of Compression Algorithms for Capsule Endoscopy Enough? A Technical Review. IEEE Rev. Biomed. Eng. 10, 26–43 (2017).
Swain, P. At a watershed? Technical developments in wireless capsule endoscopy. J. Dig. Dis. 11, 259–265 (2010).
Dupont, P. E. et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6, eabi8017 (2021).
Hakimian, S. et al. Assessment of Video Capsule Endoscopy in the Management of Acute Gastrointestinal Bleeding During the COVID-19 Pandemic. JAMA Netw. Open 4, e2118796–e2118796 (2021).
Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–417 (2000). This study introduces the wireless capsule endoscopy for the first time.
Ding, Z. et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 157, 1044–1054.e1045 (2019).
Luo, Y.-Y. et al. Magnetic Steering of Capsule Endoscopy Improves Small Bowel Capsule Endoscopy Completion Rate. Dig. Dis. Sci. 64, 1908–1915 (2019).
Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960). Richard Feynman proposed the concept of “swallowing the surgeon”.
Ciuti, G., Menciassi, A. & Dario, P. Capsule Endoscopy: From Current Achievements to Open Challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
Pikul, J. H., Gang Zhang, H., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).
Ma, S. et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 28, 653–666 (2018).
Mostafalu, P. & Sonkusale, S. Flexible and transparent gastric battery: Energy harvesting from gastric acid for endoscopy application. Biosens. Bioelectron. 54, 292–296 (2014).
Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).
Sharova, A. S., Melloni, F., Lanzani, G., Bettinger, C. J. & Caironi, M. Edible Electronics: The Vision and the Challenge. Adv. Mater. Technol. 6, 2000757 (2021).
Ilic, I. K. et al. An Edible Rechargeable Battery. Adv. Mater. 35, 2211400 (2023).
Wang, F. et al. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017).
Chen, K. et al. An Edible and Nutritive Zinc-Ion Micro-supercapacitor in the Stomach with Ultrahigh Energy Density. ACS Nano 16, 15261–15272 (2022).
Zhang, M. et al. Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid. Mater. 4, 865–884 (2021).
Sathya Prasanna, A. P. et al. Green Energy from Edible Materials: Triboelectrification-Enabled Sustainable Self-Powered Human Joint Movement Monitoring. ACS Sustain. Chem. Eng. 10, 6549–6558 (2022).
Pichon, L. Electromagnetic analysis and simulation aspects of wireless power transfer in the domain of inductive power transmission technology. J. Electromagn. Waves Appl. 34, 1719–1755 (2020).
Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A. & Soliman, A. M. Near-field wireless power transfer used in biomedical implants: A comprehensive review. IET Power Electron 15, 1936–1955 (2022).
Gao, J. & Yan, G. Design and Implementation of a Clamper-Based and Motor-Driven Capsule Robot Powered by Wireless Power Transmission. IEEE Access 7, 138151–138161 (2019).
Gao, J., Zhang, Z. & Yan, G. Development of a Capsule Robot for Exploring the Colon. Micromachines 10, 456 (2019).
Jia, Z. et al. The optimization of wireless power transmission: design and realization. Int. J. Med. Robot. 8, 337–347 (2012).
Meng, M. H. et al. Wireless robotic capsule endoscopy: State-of-the-art and challenges. In Fifth world congress on intelligent control and automation 6, 5561–5555a (IEEE, 2004).
Höög, C. M. et al. Capsule Retentions and Incomplete Capsule Endoscopy Examinations: An Analysis of 2300 Examinations. Gastroenterol. Res. Pract. 2012, 518718 (2012).
Byungkyu, K., Sunghak, L., Jong Heong, P. & Jong-Oh, P. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE ASME Trans. Mechatron. 10, 77–86 (2005).
Cheung, E., Karagozler, M. E., Sukho, P., Byungkyu, K. & Sitti, M. A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives. In 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 551-557 (IEEE, 2005).
Gorini, S. et al. A novel SMA-based actuator for a legged endoscopic capsule. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics 443–449 (IEEE, 2006).
Gao, J., Yan, G., He, S., Xu, F. & Wang, Z. Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper. Robotica 35, 521–536 (2017).
Tortora, G. et al. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minim. Invasive Ther. Allied Technol. 18, 280–290 (2009).
Huajin, L., Yisheng, G., Zhiguang, X., Chao, H. & Zhiyong, L. A screw propelling capsule robot. In 2011 IEEE International Conference on Information and Automation 786–791 (IEEE, 2011).
Carpi, F., Galbiati, S. & Carpi, A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomed. Pharmacother. 60, 370–374 (2006). The concept of manipulating capsule endoscopes through magnetic interactions was proposed.
Rey, J. F. et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy 42, 541–545 (2010).
Keller, H. et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 859–865 (IEEE, 2012).
Taddese, A. Z., Slawinski, P. R., Obstein, K. L. & Valdastri, P. Nonholonomic closed-loop velocity control of a soft-tethered magnetic capsule endoscope. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1139–1144 (IEEE, 2016).
Kim, J. et al. Redundant Electromagnetic Control of an Endoscopic Magnetic Capsule Driven by Multiple Electromagnets Configuration. IEEE Trans. Ind. Electron. 69, 11370–11382 (2022).
Yuce, M. R. & Dissanayake, T. Easy-to-Swallow Wireless Telemetry. IEEE Microw. Mag. 13, 90–101 (2012).
Bradley, P. D. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. In 2006 IEEE Biomedical Circuits and Systems Conference 158–161 (IEEE, 2006).
Bao, Z., Guo, Y. X. & Mittra, R. An Ultrawideband Conformal Capsule Antenna With Stable Impedance Matching. IEEE Trans. Antennas Propag. 65, 5086–5094 (2017).
Li, R. & Guo, Y. A Conformal UWB Dual-Polarized Antenna for Wireless Capsule Endoscope Systems. IEEE Antennas Wirel. Propag. Lett. 20, 483–487 (2021). The UWB dual-polarization antenna specifically for WCE applications.
Kshetrimayum, R. S. An introduction to UWB communication systems. IEEE Potentials 28, 9–13 (2009).
Astrin, A. IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks. IEEE Std 802, 15 (2012).
Kim, K., Won, K., Shin, J. & Choi, H. J. A comparison of communication techniques for capsule endoscopes. In The 17th Asia Pacific Conference on Communications 761–764 (IEEE, 2011).
Bang, S. et al. First clinical trial of the “MiRo” capsule endoscope by using a novel transmission technology: electric-field propagation. Gastrointest. Endosc. 69, 253–259 (2009). The first commercial WCE device utilizing IBC technology.
Song, Y. et al. The Simulation Method of the Galvanic Coupling Intrabody Communication With Different Signal Transmission Paths. IEEE Trans. Instrum. Meas. 60, 1257–1266 (2011).
Cho, N. et al. The Human Body Characteristics as a Signal Transmission Medium for Intrabody Communication. IEEE Trans. Microw. Theory Tech. 55, 1080–1086 (2007).
Baldus, H., Corroy, S., Fazzi, A., Klabunde, K. & Schenk, T. Human-centric connectivity enabled by body-coupled communications. IEEE Commun. Mag. 47, 172–178 (2009).
Zeising, S., Thalmayer, A. S., Lübke, M., Fischer, G. & Kirchner, J. Localization of Passively Guided Capsule Endoscopes—A Review. IEEE Sens. J. 22, 20138–20155 (2022).
Thomas, S. Smartpill redefines ‘noninvasive’. Buffalo Phys. 40, 13–14 (2006).
Jacob, H., Levy, D., Shreiber, R., Glukhovsky, A. & Fischer, D. Localization of the given M2A ingestible capsule in the given diagnostic imaging system. In Gastrointestinal Endoscopy AB135-AB135 (IEEE, 2002).
Ye, Y., Swar, P., Pahlavan, K. & Ghaboosi, K. Accuracy of RSS-Based RF Localization in Multi-capsule Endoscopy. Int. J. Wirel. Inf. Netw. 19, 229–238 (2012).
Hou, J. et al. Design and Implementation of a High Resolution Localization System for In-Vivo Capsule Endoscopy. In 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing 209–214 (IEEE, 2009).
Hany, U. & Akter, L. Non-Parametric Approach Using ML Estimated Path Loss Bounded WCL for Video Capsule Endoscope Localization. IEEE Sens. J. 18, 4761–4769 (2018).
Nadimi, E. S., Blanes-Vidal, V., Tarokh, V. & Johansen, P. M. Bayesian-based localization of wireless capsule endoscope using received signal strength. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 5988–5991 (IEEE, 2014).
Hu, C. et al. A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation. IEEE Sens. J. 10, 903–913 (2010). Using a three-axis magnetic sensor array for capsule localization.
Son, D., Yim, S. & Sitti, M. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot Using a 2-D Array of Hall-Effect Sensors. IEEE ASME Trans. Mechatron. 21, 708–716 (2016).
Fu, Y. & Guo, Y. X. Wearable Permanent Magnet Tracking System for Wireless Capsule Endoscope. IEEE Sens. J. 22, 8113–8122 (2022).
Boroujeni, P. S., Pishkenari, H. N., Moradi, H. & Vossoughi, G. Model-Aided Real-Time Localization and Parameter Identification of a Magnetic Endoscopic Capsule Using Extended Kalman Filter. IEEE Sens. J. 21, 13667–13675 (2021).
Natali, C. D., Beccani, M. & Valdastri, P. Real-Time Pose Detection for Magnetic Medical Devices. IEEE Trans. Magn. 49, 3524–3527 (2013).
Popek, K. M., Mahoney, A. W. & Abbott, J. J. Localization method for a magnetic capsule endoscope propelled by a rotating magnetic dipole field. In 2013 IEEE International Conference on Robotics and Automation 5348–5353 (IEEE, 2013).
Gleich, B., Schmale, I., Nielsen, T. & Rahmer, J. Miniature magneto-mechanical resonators for wireless tracking and sensing. Science 380, 966–971 (2023).
Iakovidis, D. K. & Koulaouzidis, A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (2015).
Mackiewicz, M., Berens, J. & Fisher, M. Wireless Capsule Endoscopy Color Video Segmentation. IEEE Trans. Med. Imaging 27, 1769–1781 (2008).
Cunha, J. P. S., Coimbra, M., Campos, P. & Soares, J. M. Automated Topographic Segmentation and Transit Time Estimation in Endoscopic Capsule Exams. IEEE Trans. Med. Imaging 27, 19–27 (2008).
Wang, C., Luo, Z., Liu, X., Bai, J. & Liao, G. Organic Boundary Location Based on Color-Texture of Visual Perception in Wireless Capsule Endoscopy Video. J. Healthc. Eng. 2018, 3090341 (2018).
Nister, D., Naroditsky, O. & Bergen, J. Visual odometry. In Proc. the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition I-I (IEEE, 2004).
Iakovidis, D. K., Spyrou, E., Diamantis, D. & Tsiompanidis, I. Capsule endoscope localization based on visual features. In 13th IEEE International Conference on BioInformatics and BioEngineering 1–4 (IEEE, 2013).
Iakovidis, D. K. et al. Deep Endoscopic Visual Measurements. IEEE J. Biomed. Health Inform. 23, 2211–2219 (2019).
Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E. & Sitti, M. Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018).
Spyrou, E. & Iakovidis, D. K. Video-based measurements for wireless capsule endoscope tracking. Meas. Sci. Technol. 25, 015002 (2014).
Liu, L., Hu, C., Cai, W. & Meng, M. Q. H. Capsule endoscope localization based on computer vision technique. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3711–3714 (IEEE, 2009).
Vedaei, S. S. & Wahid, K. A. MagnetOFuse: A Hybrid Tracking Algorithm for Wireless Capsule Endoscopy Within the GI Track. IEEE Trans. Instrum. Meas. 71, 1–11 (2022). This study innovatively proposes a hybrid positioning method that combines magnetic and visual elements.
Geng, Y. & Pahlavan, K. Design, Implementation, and Fundamental Limits of Image and RF Based Wireless Capsule Endoscopy Hybrid Localization. Ieee. Trans. Mob. Comput. 15, 1951–1964 (2016).
Pahlavan, K. et al. A Novel Cyber Physical System for 3-D Imaging of the Small Intestine In Vivo. IEEE Access 3, 2730–2742 (2015).
Rahim, T., Usman, M. A. & Shin, S. Y. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging. Comput. Med. Imaging Graph. 85, 101767 (2020).
Lewis, B. S., Eisen, G. M. & Friedman, S. A Pooled Analysis to Evaluate Results of Capsule Endoscopy Trials. Endoscopy 37, 960–965 (2005).
Buijs, M. M. et al. Intra and inter-observer agreement on polyp detection in colon capsule endoscopy evaluations. U. Eur. Gastroenterol. J. 6, 1563–1568 (2018).
Li, B. & Meng, M. Q. H. Wireless capsule endoscopy images enhancement via adaptive contrast diffusion. J. Vis. Commun. Image Represent. 23, 222–228 (2012).
Nam, S.-J. et al. 3D reconstruction of small bowel lesions using stereo camera-based capsule endoscopy. Sci. Rep. 10, 6025 (2020).
Saurin, J.-C. et al. Multicenter prospective evaluation of the express view reading mode for small-bowel capsule endoscopy studies. Endosc. Int. Open 06, E616–E621 (2018).
Han, S., Fahed, J. & Cave, D. R. Suspected Blood Indicator to Identify Active Gastrointestinal Bleeding: A Prospective Validation. Gasteroenterol. Res. 11, 106 (2018).
Liu, G., Yan, G., Kuang, S. & Wang, Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput. Biol. Med. 70, 131–138 (2016).
Yuan, Y., Li, B. & Meng, M. Q. H. Improved Bag of Feature for Automatic Polyp Detection in Wireless Capsule Endoscopy Images. IEEE Trans. Autom. Sci. Eng. 13, 529–535 (2016).
Charfi, S. & Ansari, M. E. Gastrointestinal tract bleeding detection from wireless capsule endoscopy videos. In Proceedings of the second International Conference on Internet of things, Data and Cloud Computing 1–5 (ACM, 2017).
Khan, M. A. et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit. Lett. 131, 193–204 (2020).
Suman, S. et al. Detection and Classification of Bleeding Region in WCE Images using Color Feature. In Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing Article 17 (ACM, 2017).
Qiu, Y. et al. Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study. Ultrasound Med. Biol. 46, 796–804 (2020).
Gluck, N. et al. A novel prepless X-ray imaging capsule for colon cancer screening. Gut 65, 371–373 (2016).
Samel, N. S. & Mashimo, H. Application of OCT in the Gastrointestinal Tract. Appl. Sci. 9, 2991 (2019).
Li, P., Kreikemeier-Bower, C., Xie, W., Kothari, V. & Terry, B. S. Design of a Wireless Medical Capsule for Measuring the Contact Pressure Between a Capsule and the Small Intestine. J. Biomech. Eng. 139, 051003 (2017).
Cummins, G. Smart pills for gastrointestinal diagnostics and therapy. Adv. Drug Deliv. Rev. 177, 113931 (2021).
Roman, S. et al. Wireless pH capsule – yield in clinical practice. Endoscopy 44, 270–276 (2012).
Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).
Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).
Kong, K., Yim, S., Choi, S. & Jeon, D. A Robotic Biopsy Device for Capsule Endoscopy. J. Med. Devices 6 031004 (2012).
Son, D., Dogan, M. D. & Sitti, M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 1132–1139 (IEEE, 2017).
Yim, S., Gultepe, E., Gracias, D. H. & Sitti, M. Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing, and Retrieving Untethered Microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2014).
Valdastri, P. et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy 40, 979–982 (2008).
Wilding, I., Hirst, P. & Connor, A. Development of a new engineering-based capsule for human drug absorption studies. Pharm. Sci. Technol. Today 3, 385–392 (2000).
Simi, M., Gerboni, G., Menciassi, A. & Valdastri, P. Magnetic Torsion Spring Mechanism for a Wireless Biopsy Capsule. J. Med. Devices 7, 041009 (2013).
Ke, Q., Luo, W., Yan, G. & Yang, K. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot. IEEE Trans. Biomed. Eng. 63, 694–706 (2016).
Sekiya, N. et al. Wireless Power Transfer System Using High-Quality Factor Superconducting Transmitting Coil for Biomedical Capsule Endoscopy. IEEE Trans. Appl. Supercond. 33, 1–5 (2023).
Miah, M. S., Jayathurathnage, P., Icheln, C., Haneda, K. & Tretyakov, S. High-Efficiency Wireless Power Transfer System for Capsule Endoscope. In 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT) 1–5 (IEEE, 2019).
Zhang, Z. L., Yuan, C. S., Gao, J. Y., Gao, C. & Zhou, J. S. Comparison of the Uniformity and Efficiency of the Square and Circular Helmholtz Coils for Wireless Power Transmission System. Prog. Electromagn. Res. Lett. 97, 131–139 (2021).
Zhuang, H., Wang, W., Zhao, K., Fei, Q. & Yan, G. Design and analysis of a wireless power transfer system for capsule robot using an optimised planar square spiral transmitting coil pair. Int. J. Med. Robot. 18, e2399 (2022).
Meng, Y. et al. A novel wireless power transfer system with two parallel opposed coils for gastrointestinal capsule robot. Sens. Actuator A Phys. 321, 112413 (2021).
Basar, M. R., Ahmad, M. Y., Cho, J. & Ibrahim, F. An Improved Wearable Resonant Wireless Power Transfer System for Biomedical Capsule Endoscope. IEEE Trans. Ind. Electron. 65, 7772–7781 (2018).
Khan, S. R., Pavuluri, S. K., Cummins, G. & Desmulliez, M. P. Y. Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy. IEEE Trans. Microw. Theory Tech. 67, 1985–1993 (2019).
Khan, S. R. & Desmulliez, M. P. Y. Towards a Miniaturized 3D Receiver WPT System for Capsule Endoscopy. Micromachines 10, 545 (2019).
Lien, G. S., Liu, C. W., Jiang, J. A., Chuang, C. L. & Teng, M. T. Magnetic Control System Targeted for Capsule Endoscopic Operations in the Stomach—Design, Fabrication, and in vitro and ex vivo Evaluations. IEEE Trans. Biomed. Eng. 59, 2068–2079 (2012).
Liao, Z. et al. Accuracy of Magnetically Controlled Capsule Endoscopy, Compared With Conventional Gastroscopy, in Detection of Gastric Diseases. Clin. Gastroenterol. Hepatol. 14, 1266–1273.e1261 (2016).
Ciuti, G. et al. Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 42, 148–152 (2010).
Sliker, L. J., Ciuti, G., Rentschler, M. E. & Menciassi, A. Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribol. Int. 102, 472–484 (2016).
Popek, K. M., Hermans, T. & Abbott, J. J. First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 1154–1160 (IEEE, 2017).
Xu, Y., Li, K., Zhao, Z. & Meng, M. Q. H. On Reciprocally Rotating Magnetic Actuation of a Robotic Capsule in Unknown Tubular Environments. IEEE Trans. Med. Robot. Bionics 3, 919–927 (2021).
Sliker, L., Ciuti, G., Rentschler, M. & Menciassi, A. Magnetically driven medical devices: a review. Expert Rev. Med. Devices 12, 737–752 (2015).
Wang, Z., Guo, S., Fu, Q. & Guo, J. Characteristic evaluation of a magnetic-actuated microrobot in pipe with screw jet motion. Microsyst. Technol. 25, 719–727 (2019).
Song, L. et al. Motion Control of Capsule Robot Based on Adaptive Magnetic Levitation Using Electromagnetic Coil. IEEE Trans. Autom. Sci. Eng., 20, 2720–2731 (2022).
Wang, F., Yang, J., Song, L. & Feng, L. Levitation control of capsule robot with 5-DOF based on arrayed Hall elements. In 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2022).
Rothwell, E. J. & Cloud, M. J. Electromagnetics (CRC Press, 2018).
Kummer, M. P. et al. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).
Lee, C. et al. Active Locomotive Intestinal Capsule Endoscope (ALICE) System: A Prospective Feasibility Study. IEEE ASME Trans. Mechatron. 20, 2067–2074 (2015). The saddle coil is used for the active motion drive of WCE, which ensures the tolerance of lying patients.
Hoang, M. C. et al. Independent Electromagnetic Field Control for Practical Approach to Actively Locomotive Wireless Capsule Endoscope. IEEE Trans. Syst. Man Cybern. Syst. 51, 3040–3052 (2021).
Arifin, F. & Saha, P. K. A Dual Band UWB antenna for WCE Systems. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1785-1786 (IEEE, 2019).
Islam, S. & Samad, M. F. Design and Analysis of a Miniaturized UWB Antenna for Wireless Capsule Endoscopy. In 2018 10th International Conference on Electrical and Computer Engineering (ICECE) 369–372 (IEEE, 2018).
Shang, J. & Yu, Y. An Ultrawideband Capsule Antenna for Biomedical Applications. IEEE Antennas Wirel. Propag. Lett. 18, 2548–2551 (2019).
Jung, J., Li, M. & Kim, Y. T. Study on 13.56-MHz out-to-in body channel and its coexistence with human body communication for capsule endoscope. Microw. Opt. Technol. Lett. 63, 2819–2825 (2021).
Jung, J., Shin, S., Li, M. & Kim, Y. T. Telemetry Transmission to Support Bidirectional Communication for Capsule Endoscope Using Human Body Communication. IEEE Microw. Wirel. Compon. Lett. 31, 905–908 (2021).
Balkrishnan, R. The Importance of Medication Adherence in Improving Chronic-Disease Related Outcomes: What We Know and What We Need to Further Know. Med. Care 43, 517–520 (2005).
Ibrahim, M. E. et al. Short Communication: Bioequivalence of Tenofovir and Emtricitabine After Coencapsulation with the Proteus Ingestible Sensor. AIDS Res. Hum. Retrovir. 34, 835–837 (2018).
Belknap, R. et al. Feasibility of an Ingestible Sensor-Based System for Monitoring Adherence to Tuberculosis Therapy. PLoS ONE 8, e53373 (2013).
Hafezi, H. et al. An Ingestible Sensor for Measuring Medication Adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015). The galvanic IBC-based Proteus Discover system monitors patients’ daily medication intake.
Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of Drug Release via Intra Body Communication with an Edible Pill. Adv. Mater. Technol. 8, 2200731 (2023).
Narmatha, P., Thangavel, V. & Vidhya, D. S. A Hybrid RF and Vision Aware Fusion Scheme for Multi-Sensor Wireless Capsule Endoscopic Localization. Wirel. Pers. Commun. 123, 1593–1624 (2022).
Zhao, Q. & Meng, M. Q. H. Polyp detection in wireless capsule endoscopy images using novel color texture features. In 2011 9th World Congress on Intelligent Control and Automation 948–952 (IEEE, 2011).
Zhou, M., Bao, G., Geng, Y., Alkandari, B. & Li, X. Polyp detection and radius measurement in small intestine using video capsule endoscopy. In 2014 7th International Conference on Biomedical Engineering and Informatics 237–241 (IEEE, 2014).
Jain, S. et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Comput. Biol. Med. 127, 104094 (2020).
Yuan, Y., Li, B. & Meng, M. Q. H. WCE Abnormality Detection Based on Saliency and Adaptive Locality-Constrained Linear Coding. IEEE Trans. Autom. Sci. Eng. 14, 149–159 (2017).
Namikawa, K. et al. Utilizing artificial intelligence in endoscopy: a clinician’s guide. Expert Rev. Gastroenterol. Hepatol. 14, 689–706 (2020).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. InAdvances in Neural Information Processing Systems, 25 (NIPS, 2012).
Hajabdollahi, M. et al. Segmentation of bleeding regions in wireless capsule endoscopy for detection of informative frames. Biomed. Signal Process. Control 53, 101565 (2019).
Rustam, F. et al. Wireless Capsule Endoscopy Bleeding Images Classification Using CNN Based Model. IEEE Access 9, 33675–33688 (2021).
Nadimi, E. S. et al. Application of deep learning for autonomous detection and localization of colorectal polyps in wireless colon capsule endoscopy. Comput. Electr. Eng. 81, 106531 (2020).
LaLonde, R., Kandel, P., Spampinato, C., Wallace, M. B. & Bagci, U. Diagnosing Colorectal Polyps in the Wild with Capsule Networks. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) 1086–1090 (IEEE, 2020).
Alaskar, H., Hussain, A., Al-Aseem, N., Liatsis, P. & Al-Jumeily, D. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images. Sensors 19, 1265 (2019).
Sharma, A., Kumar, R. & Garg, P. Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images. Int. J. Med. Inf. 177, 105142 (2023).
Son, D., Gilbert, H. & Sitti, M. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robot 7, 10–21 (2019). Magnetic field-driven soft capsule robot with fine needle capillary biopsy.
Hoang, M. C. et al. A Robotic Biopsy Endoscope with Magnetic 5-DOF Locomotion and a Retractable Biopsy Punch. Micromachines 11, 98 (2020).
Hoang, M. C. et al. Untethered Robotic Motion and Rotating Blade Mechanism for Actively Locomotive Biopsy Capsule Endoscope. IEEE Access 7, 93364–93374 (2019).
Leon-Rodriguez, H., Park, S. H. & Park, J. O. Testing and Evaluation of Foldable Biopsy Tools for Active Capsule Endoscope. In 2020 20th International Conference on Control, Automation and Systems (ICCAS) 473–479 (IEEE, 2020).
Tang, Q. et al. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front. Cell. Infect. Microbiol. 10, 151 (2020).
Shokrollahi, P. et al. Blindly Controlled Magnetically Actuated Capsule for Noninvasive Sampling of the Gastrointestinal Microbiome. IEEE ASME Trans. Mechatron. 26, 2616–2628 (2021).
Ding, Z. et al. Novel scheme for non-invasive gut bioinformation acquisition with a magnetically controlled sampling capsule endoscope. Gut 70, 2297–2306 (2021).
Finocchiaro, M. et al. Design of a magnetic actuation system for a microbiota-collection ingestible capsule. In 2021 IEEE International Conference on Robotics and Automation (ICRA) 6905–6911 (IEEEE, 2021).
Park, S., Lee, H., Kim, D. I., Kee, H. & Park, S. Active Multiple-Sampling Capsule for Gut Microbiome. IEEE ASME Trans. Mechatron. 27, 4384–4395 (2022).
Nguyen, K. T. et al. Medical Microrobot — A Drug Delivery Capsule Endoscope with Active Locomotion and Drug Release Mechanism: Proof of Concept. Int. J. Control Autom. Syst. 18, 65–75 (2020).
Guo, S., Zhang, L. & Yang, Q. The Structural Design of a Magnetic Driven Wireless Capsule Robot for Drug Delivery. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA) 844–849 (IEEE, 2019).
Guo, S., Hu, Y., Guo, J. & Fu, Q. Design of a Novel Drug-Delivery Capsule Robot. In 2021 IEEE International Conference on Mechatronics and Automation (ICMA) 938–943 (IEEE, 2021).
Hua, D. et al. Design, Fabrication, and Testing of a Novel Ferrofluid Soft Capsule Robot. IEEE ASME Trans. Mechatron. 27, 1403–1413 (2022).
European Medicines Agency. Predictions for medical device development. https://www.ema.europa.eu/en/human-regulatory/overview/medical-devices#medical-devices-legislationsection (2021).
Boivin, M. L., Lochs, H. & Voderholzer, W. A. Does Passage of a Patency Capsule Indicate Small-Bowel Patency? A Prospective Clinical Trial? Endoscopy 37, 808–815 (2005).
Zheng, S. et al. Magneto-Responsive Polymeric Soft-Shell-Based Capsule Endoscopy for High-Performance Gastrointestinal Exploration via Morphological Shape Control. Adv. Intell. Syst. 6, 2300632 (2023).
Park, S.-m, Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).
Traverso, G. et al. Microneedles for Drug Delivery via the Gastrointestinal Tract. J. Pharm. Sci. 104, 362–367 (2015).
Basar, M. R., Ahmad, M. Y., Cho, J. & Ibrahim, F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens. Actuator A Phys. 249, 207–216 (2016).
International Commission on Non-Ionizing Radiation Protection Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 118, 483–524 (2020).
Bailey, W. H. et al. Synopsis of IEEE Std C95.1™-2019 “IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Access 7, 171346–171356 (2019).
Faerber, J. et al. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna. IEEE Trans. Biomed. Circuits Syst. 12, 95–105 (2018).
Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).
Rappaport, T. S. et al. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 65, 6213–6230 (2017).
Gerke, S., Minssen, T. & Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare 295–336 (Academic Press, 2020).
Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2, 305–311 (2020).
Tiwari, R. N. et al. Design and Validation of Loop-Based Ultraminiature Low-Profile Ultrawideband Capsule Antenna Inside Wistar Rat. IEEE Trans. Antennas Propag. 71, 8326–8331 (2023).
Lei, I. I. et al. Clinicians’ Guide to Artificial Intelligence in Colon Capsule Endoscopy—Technology Made Simple. Diagnostics 13, 1038 (2023).
Hager, G. D. et al. Surgical and interventional robotics: part III [Tutorial]. IEEE Robot. Autom. Mag. 15, 84–93 (2008).
Silva, A. J., Ramirez, O. A. D., Vega, V. P. & Oliver, J. P. O. Phantom omni haptic device: Kinematic and manipulability. In 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA) 193–198 (IEEE, 2009).
Ciuti, G. et al. A Comparative Evaluation of Control Interfaces for a Robotic-Aided Endoscopic Capsule Platform. IEEE Trans. Robot. 28, 534–538 (2012).
Hwang, Y.-E. & Son, Y. D. Development of Head Mounted Display Interface System for Controlling Wireless Capsule Endoscope. J. Biomed. Eng. Res. 43, 417–423 (2022).
Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).
Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).
Xu, Y., Li, K., Zhao, Z. & Meng, M. Q. H. A Novel System for Closed-Loop Simultaneous Magnetic Actuation and Localization of WCE Based on External Sensors and Rotating Actuation. IEEE Trans. Autom. Sci. Eng. 18, 1640–1652 (2021).
Garbay, T. et al. Distilling the knowledge in CNN for WCE screening tool. In 2019 Conference on Design and Architectures for Signal and Image Processing (DASIP) 19–22 (IEEE, 2019).
Wang, Y., Yoo, S., Braun, J.-M. & Nadimi, E. S. A locally-processed light-weight deep neural network for detecting colorectal polyps in wireless capsule endoscopes. J. Real. Time Image Process. 18, 1183–1194 (2021).
Chen, W., Sui, J. & Wang, C. Magnetically Actuated Capsule Robots: A Review. IEEE Access 10, 88398–88420 (2022).
Peker, F. & Ferhanoğlu, O. Multi-Capsule Endoscopy: An initial study on modeling and phantom experimentation of a magnetic capsule train. J. Med. Biol. Eng. 41, 315–321 (2021).
Guo, S., Yang, Q., Bai, L. & Zhao, Y. Development of Multiple Capsule Robots in Pipe. Micromachines 9, 259 (2018).
Hollander, J. E. & Carr, B. G. Virtually Perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681 (2020).
Kantsevoy, S. V. et al. Endoscopic mucosal resection and endoscopic submucosal dissection. Gastrointest. Endosc. 68, 11–18 (2008).
Soto, F., Wang, J., Ahmed, R. & Demirci, U. Medical Micro/Nanorobots in Precision Medicine. Adv. Sci. 7, 2002203 (2020).
Ramadi, K. B. et al. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci. Robot. 8, eade9676 (2023).
Abramson, A. et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci. Adv. 6, eaaz0127 (2020).
Sun, Y. et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat. Commun. 15, 1839 (2024).
Chen, Z. et al. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 15, 644 (2024).
Mao, Y., Guo, J., Guo, S., Fu, Q. & Mo, B. A Magnetically Controlled Capsule Robot for Obesity Treatment with Intra-gastric Balloon. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA) 1651–1656 (IEEE, 2022).
Leung, B. H. K. et al. A Therapeutic Wireless Capsule for Treatment of Gastrointestinal Haemorrhage by Balloon Tamponade Effect. IEEE Trans. Biomed. Eng. 64, 1106–1114 (2017).
Bourbakis, N., Makrogiannis, S. & Kavraki, D. A neural network-based detection of bleeding in sequences of WCE images. In Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05) 324–327 (IEEE, 2005).
Carta, R. et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens. Bioelectron. 25, 845–851 (2009).
Gao, Y. et al. Low-Power Ultrawideband Wireless Telemetry Transceiver for Medical Sensor Applications. IEEE Trans. Biomed. Eng. 58, 768–772 (2011).
Swain, P. et al. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointest. Endosc. 71, 1290–1293 (2010).
Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).