Robotics

Robotic wireless capsule endoscopy: recent advances and upcoming technologies


  • Basar, M. R., Malek, F., Juni, K. M., Idris, M. S. & Saleh, M. I. M. Ingestible Wireless Capsule Technology: A Review of Development and Future Indication. Int. J. Antennas Propag. 2012, 807165 (2012).

    Article 

    Google Scholar
     

  • Liu, L., Towfighian, S. & Hila, A. A Review of Locomotion Systems for Capsule Endoscopy. IEEE Rev. Biomed. Eng. 8, 138–151 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Alam, M. W., Hasan, M. M., Mohammed, S. K., Deeba, F. & Wahid, K. A. Are Current Advances of Compression Algorithms for Capsule Endoscopy Enough? A Technical Review. IEEE Rev. Biomed. Eng. 10, 26–43 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Swain, P. At a watershed? Technical developments in wireless capsule endoscopy. J. Dig. Dis. 11, 259–265 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Dupont, P. E. et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6, eabi8017 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hakimian, S. et al. Assessment of Video Capsule Endoscopy in the Management of Acute Gastrointestinal Bleeding During the COVID-19 Pandemic. JAMA Netw. Open 4, e2118796–e2118796 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Iddan, G., Meron, G., Glukhovsky, A. & Swain, P. Wireless capsule endoscopy. Nature 405, 417–417 (2000). This study introduces the wireless capsule endoscopy for the first time.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, Z. et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 157, 1044–1054.e1045 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Luo, Y.-Y. et al. Magnetic Steering of Capsule Endoscopy Improves Small Bowel Capsule Endoscopy Completion Rate. Dig. Dis. Sci. 64, 1908–1915 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960). Richard Feynman proposed the concept of “swallowing the surgeon”.


    Google Scholar
     

  • Ciuti, G., Menciassi, A. & Dario, P. Capsule Endoscopy: From Current Achievements to Open Challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pikul, J. H., Gang Zhang, H., Cho, J., Braun, P. V. & King, W. P. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. 28, 653–666 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mostafalu, P. & Sonkusale, S. Flexible and transparent gastric battery: Energy harvesting from gastric acid for endoscopy application. Biosens. Bioelectron. 54, 292–296 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharova, A. S., Melloni, F., Lanzani, G., Bettinger, C. J. & Caironi, M. Edible Electronics: The Vision and the Challenge. Adv. Mater. Technol. 6, 2000757 (2021).

    Article 

    Google Scholar
     

  • Ilic, I. K. et al. An Edible Rechargeable Battery. Adv. Mater. 35, 2211400 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, F. et al. Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. An Edible and Nutritive Zinc-Ion Micro-supercapacitor in the Stomach with Ultrahigh Energy Density. ACS Nano 16, 15261–15272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M. et al. Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid. Mater. 4, 865–884 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sathya Prasanna, A. P. et al. Green Energy from Edible Materials: Triboelectrification-Enabled Sustainable Self-Powered Human Joint Movement Monitoring. ACS Sustain. Chem. Eng. 10, 6549–6558 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pichon, L. Electromagnetic analysis and simulation aspects of wireless power transfer in the domain of inductive power transmission technology. J. Electromagn. Waves Appl. 34, 1719–1755 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A. & Soliman, A. M. Near-field wireless power transfer used in biomedical implants: A comprehensive review. IET Power Electron 15, 1936–1955 (2022).

    Article 

    Google Scholar
     

  • Gao, J. & Yan, G. Design and Implementation of a Clamper-Based and Motor-Driven Capsule Robot Powered by Wireless Power Transmission. IEEE Access 7, 138151–138161 (2019).

    Article 

    Google Scholar
     

  • Gao, J., Zhang, Z. & Yan, G. Development of a Capsule Robot for Exploring the Colon. Micromachines 10, 456 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jia, Z. et al. The optimization of wireless power transmission: design and realization. Int. J. Med. Robot. 8, 337–347 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Meng, M. H. et al. Wireless robotic capsule endoscopy: State-of-the-art and challenges. In Fifth world congress on intelligent control and automation 6, 5561–5555a (IEEE, 2004).

  • Höög, C. M. et al. Capsule Retentions and Incomplete Capsule Endoscopy Examinations: An Analysis of 2300 Examinations. Gastroenterol. Res. Pract. 2012, 518718 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Byungkyu, K., Sunghak, L., Jong Heong, P. & Jong-Oh, P. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). IEEE ASME Trans. Mechatron. 10, 77–86 (2005).

    Article 

    Google Scholar
     

  • Cheung, E., Karagozler, M. E., Sukho, P., Byungkyu, K. & Sitti, M. A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives. In 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 551-557 (IEEE, 2005).

  • Gorini, S. et al. A novel SMA-based actuator for a legged endoscopic capsule. In The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics 443–449 (IEEE, 2006).

  • Gao, J., Yan, G., He, S., Xu, F. & Wang, Z. Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper. Robotica 35, 521–536 (2017).

    Article 

    Google Scholar
     

  • Tortora, G. et al. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minim. Invasive Ther. Allied Technol. 18, 280–290 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Huajin, L., Yisheng, G., Zhiguang, X., Chao, H. & Zhiyong, L. A screw propelling capsule robot. In 2011 IEEE International Conference on Information and Automation 786–791 (IEEE, 2011).

  • Carpi, F., Galbiati, S. & Carpi, A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomed. Pharmacother. 60, 370–374 (2006). The concept of manipulating capsule endoscopes through magnetic interactions was proposed.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rey, J. F. et al. Feasibility of stomach exploration with a guided capsule endoscope. Endoscopy 42, 541–545 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller, H. et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 859–865 (IEEE, 2012).

  • Taddese, A. Z., Slawinski, P. R., Obstein, K. L. & Valdastri, P. Nonholonomic closed-loop velocity control of a soft-tethered magnetic capsule endoscope. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1139–1144 (IEEE, 2016).

  • Kim, J. et al. Redundant Electromagnetic Control of an Endoscopic Magnetic Capsule Driven by Multiple Electromagnets Configuration. IEEE Trans. Ind. Electron. 69, 11370–11382 (2022).

    Article 

    Google Scholar
     

  • Yuce, M. R. & Dissanayake, T. Easy-to-Swallow Wireless Telemetry. IEEE Microw. Mag. 13, 90–101 (2012).

    Article 

    Google Scholar
     

  • Bradley, P. D. An ultra low power, high performance Medical Implant Communication System (MICS) transceiver for implantable devices. In 2006 IEEE Biomedical Circuits and Systems Conference 158–161 (IEEE, 2006).

  • Bao, Z., Guo, Y. X. & Mittra, R. An Ultrawideband Conformal Capsule Antenna With Stable Impedance Matching. IEEE Trans. Antennas Propag. 65, 5086–5094 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, R. & Guo, Y. A Conformal UWB Dual-Polarized Antenna for Wireless Capsule Endoscope Systems. IEEE Antennas Wirel. Propag. Lett. 20, 483–487 (2021). The UWB dual-polarization antenna specifically for WCE applications.

    Article 
    ADS 

    Google Scholar
     

  • Kshetrimayum, R. S. An introduction to UWB communication systems. IEEE Potentials 28, 9–13 (2009).

    Article 

    Google Scholar
     

  • Astrin, A. IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks. IEEE Std 802, 15 (2012).


    Google Scholar
     

  • Kim, K., Won, K., Shin, J. & Choi, H. J. A comparison of communication techniques for capsule endoscopes. In The 17th Asia Pacific Conference on Communications 761–764 (IEEE, 2011).

  • Bang, S. et al. First clinical trial of the “MiRo” capsule endoscope by using a novel transmission technology: electric-field propagation. Gastrointest. Endosc. 69, 253–259 (2009). The first commercial WCE device utilizing IBC technology.

    Article 
    PubMed 

    Google Scholar
     

  • Song, Y. et al. The Simulation Method of the Galvanic Coupling Intrabody Communication With Different Signal Transmission Paths. IEEE Trans. Instrum. Meas. 60, 1257–1266 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cho, N. et al. The Human Body Characteristics as a Signal Transmission Medium for Intrabody Communication. IEEE Trans. Microw. Theory Tech. 55, 1080–1086 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Baldus, H., Corroy, S., Fazzi, A., Klabunde, K. & Schenk, T. Human-centric connectivity enabled by body-coupled communications. IEEE Commun. Mag. 47, 172–178 (2009).

    Article 

    Google Scholar
     

  • Zeising, S., Thalmayer, A. S., Lübke, M., Fischer, G. & Kirchner, J. Localization of Passively Guided Capsule Endoscopes—A Review. IEEE Sens. J. 22, 20138–20155 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, S. Smartpill redefines ‘noninvasive’. Buffalo Phys. 40, 13–14 (2006).


    Google Scholar
     

  • Jacob, H., Levy, D., Shreiber, R., Glukhovsky, A. & Fischer, D. Localization of the given M2A ingestible capsule in the given diagnostic imaging system. In Gastrointestinal Endoscopy AB135-AB135 (IEEE, 2002).

  • Ye, Y., Swar, P., Pahlavan, K. & Ghaboosi, K. Accuracy of RSS-Based RF Localization in Multi-capsule Endoscopy. Int. J. Wirel. Inf. Netw. 19, 229–238 (2012).

    Article 

    Google Scholar
     

  • Hou, J. et al. Design and Implementation of a High Resolution Localization System for In-Vivo Capsule Endoscopy. In 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing 209–214 (IEEE, 2009).

  • Hany, U. & Akter, L. Non-Parametric Approach Using ML Estimated Path Loss Bounded WCL for Video Capsule Endoscope Localization. IEEE Sens. J. 18, 4761–4769 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Nadimi, E. S., Blanes-Vidal, V., Tarokh, V. & Johansen, P. M. Bayesian-based localization of wireless capsule endoscope using received signal strength. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 5988–5991 (IEEE, 2014).

  • Hu, C. et al. A Cubic 3-Axis Magnetic Sensor Array for Wirelessly Tracking Magnet Position and Orientation. IEEE Sens. J. 10, 903–913 (2010). Using a three-axis magnetic sensor array for capsule localization.

    Article 
    ADS 

    Google Scholar
     

  • Son, D., Yim, S. & Sitti, M. A 5-D Localization Method for a Magnetically Manipulated Untethered Robot Using a 2-D Array of Hall-Effect Sensors. IEEE ASME Trans. Mechatron. 21, 708–716 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, Y. & Guo, Y. X. Wearable Permanent Magnet Tracking System for Wireless Capsule Endoscope. IEEE Sens. J. 22, 8113–8122 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Boroujeni, P. S., Pishkenari, H. N., Moradi, H. & Vossoughi, G. Model-Aided Real-Time Localization and Parameter Identification of a Magnetic Endoscopic Capsule Using Extended Kalman Filter. IEEE Sens. J. 21, 13667–13675 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Natali, C. D., Beccani, M. & Valdastri, P. Real-Time Pose Detection for Magnetic Medical Devices. IEEE Trans. Magn. 49, 3524–3527 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Popek, K. M., Mahoney, A. W. & Abbott, J. J. Localization method for a magnetic capsule endoscope propelled by a rotating magnetic dipole field. In 2013 IEEE International Conference on Robotics and Automation 5348–5353 (IEEE, 2013).

  • Gleich, B., Schmale, I., Nielsen, T. & Rahmer, J. Miniature magneto-mechanical resonators for wireless tracking and sensing. Science 380, 966–971 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iakovidis, D. K. & Koulaouzidis, A. Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mackiewicz, M., Berens, J. & Fisher, M. Wireless Capsule Endoscopy Color Video Segmentation. IEEE Trans. Med. Imaging 27, 1769–1781 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Cunha, J. P. S., Coimbra, M., Campos, P. & Soares, J. M. Automated Topographic Segmentation and Transit Time Estimation in Endoscopic Capsule Exams. IEEE Trans. Med. Imaging 27, 19–27 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Luo, Z., Liu, X., Bai, J. & Liao, G. Organic Boundary Location Based on Color-Texture of Visual Perception in Wireless Capsule Endoscopy Video. J. Healthc. Eng. 2018, 3090341 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Nister, D., Naroditsky, O. & Bergen, J. Visual odometry. In Proc. the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition I-I (IEEE, 2004).

  • Iakovidis, D. K., Spyrou, E., Diamantis, D. & Tsiompanidis, I. Capsule endoscope localization based on visual features. In 13th IEEE International Conference on BioInformatics and BioEngineering 1–4 (IEEE, 2013).

  • Iakovidis, D. K. et al. Deep Endoscopic Visual Measurements. IEEE J. Biomed. Health Inform. 23, 2211–2219 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E. & Sitti, M. Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 275, 1861–1870 (2018).

    Article 

    Google Scholar
     

  • Spyrou, E. & Iakovidis, D. K. Video-based measurements for wireless capsule endoscope tracking. Meas. Sci. Technol. 25, 015002 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, L., Hu, C., Cai, W. & Meng, M. Q. H. Capsule endoscope localization based on computer vision technique. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 3711–3714 (IEEE, 2009).

  • Vedaei, S. S. & Wahid, K. A. MagnetOFuse: A Hybrid Tracking Algorithm for Wireless Capsule Endoscopy Within the GI Track. IEEE Trans. Instrum. Meas. 71, 1–11 (2022). This study innovatively proposes a hybrid positioning method that combines magnetic and visual elements.

    Article 

    Google Scholar
     

  • Geng, Y. & Pahlavan, K. Design, Implementation, and Fundamental Limits of Image and RF Based Wireless Capsule Endoscopy Hybrid Localization. Ieee. Trans. Mob. Comput. 15, 1951–1964 (2016).

    Article 

    Google Scholar
     

  • Pahlavan, K. et al. A Novel Cyber Physical System for 3-D Imaging of the Small Intestine In Vivo. IEEE Access 3, 2730–2742 (2015).

    Article 

    Google Scholar
     

  • Rahim, T., Usman, M. A. & Shin, S. Y. A survey on contemporary computer-aided tumor, polyp, and ulcer detection methods in wireless capsule endoscopy imaging. Comput. Med. Imaging Graph. 85, 101767 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, B. S., Eisen, G. M. & Friedman, S. A Pooled Analysis to Evaluate Results of Capsule Endoscopy Trials. Endoscopy 37, 960–965 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buijs, M. M. et al. Intra and inter-observer agreement on polyp detection in colon capsule endoscopy evaluations. U. Eur. Gastroenterol. J. 6, 1563–1568 (2018).

    Article 

    Google Scholar
     

  • Li, B. & Meng, M. Q. H. Wireless capsule endoscopy images enhancement via adaptive contrast diffusion. J. Vis. Commun. Image Represent. 23, 222–228 (2012).

    Article 

    Google Scholar
     

  • Nam, S.-J. et al. 3D reconstruction of small bowel lesions using stereo camera-based capsule endoscopy. Sci. Rep. 10, 6025 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saurin, J.-C. et al. Multicenter prospective evaluation of the express view reading mode for small-bowel capsule endoscopy studies. Endosc. Int. Open 06, E616–E621 (2018).

    Article 

    Google Scholar
     

  • Han, S., Fahed, J. & Cave, D. R. Suspected Blood Indicator to Identify Active Gastrointestinal Bleeding: A Prospective Validation. Gasteroenterol. Res. 11, 106 (2018).

    Article 

    Google Scholar
     

  • Liu, G., Yan, G., Kuang, S. & Wang, Y. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput. Biol. Med. 70, 131–138 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, Y., Li, B. & Meng, M. Q. H. Improved Bag of Feature for Automatic Polyp Detection in Wireless Capsule Endoscopy Images. IEEE Trans. Autom. Sci. Eng. 13, 529–535 (2016).

    Article 

    Google Scholar
     

  • Charfi, S. & Ansari, M. E. Gastrointestinal tract bleeding detection from wireless capsule endoscopy videos. In Proceedings of the second International Conference on Internet of things, Data and Cloud Computing 1–5 (ACM, 2017).

  • Khan, M. A. et al. Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit. Lett. 131, 193–204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Suman, S. et al. Detection and Classification of Bleeding Region in WCE Images using Color Feature. In Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing Article 17 (ACM, 2017).

  • Qiu, Y. et al. Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study. Ultrasound Med. Biol. 46, 796–804 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gluck, N. et al. A novel prepless X-ray imaging capsule for colon cancer screening. Gut 65, 371–373 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samel, N. S. & Mashimo, H. Application of OCT in the Gastrointestinal Tract. Appl. Sci. 9, 2991 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, P., Kreikemeier-Bower, C., Xie, W., Kothari, V. & Terry, B. S. Design of a Wireless Medical Capsule for Measuring the Contact Pressure Between a Capsule and the Small Intestine. J. Biomech. Eng. 139, 051003 (2017).

  • Cummins, G. Smart pills for gastrointestinal diagnostics and therapy. Adv. Drug Deliv. Rev. 177, 113931 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roman, S. et al. Wireless pH capsule – yield in clinical practice. Endoscopy 44, 270–276 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalantar-Zadeh, K. et al. A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018).

    Article 

    Google Scholar
     

  • Kong, K., Yim, S., Choi, S. & Jeon, D. A Robotic Biopsy Device for Capsule Endoscopy. J. Med. Devices 6 031004 (2012).

  • Son, D., Dogan, M. D. & Sitti, M. Magnetically actuated soft capsule endoscope for fine-needle aspiration biopsy. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 1132–1139 (IEEE, 2017).

  • Yim, S., Gultepe, E., Gracias, D. H. & Sitti, M. Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing, and Retrieving Untethered Microgrippers. IEEE Trans. Biomed. Eng. 61, 513–521 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Valdastri, P. et al. Wireless therapeutic endoscopic capsule: in vivo experiment. Endoscopy 40, 979–982 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, I., Hirst, P. & Connor, A. Development of a new engineering-based capsule for human drug absorption studies. Pharm. Sci. Technol. Today 3, 385–392 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simi, M., Gerboni, G., Menciassi, A. & Valdastri, P. Magnetic Torsion Spring Mechanism for a Wireless Biopsy Capsule. J. Med. Devices 7, 041009 (2013).

    Article 

    Google Scholar
     

  • Ke, Q., Luo, W., Yan, G. & Yang, K. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot. IEEE Trans. Biomed. Eng. 63, 694–706 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sekiya, N. et al. Wireless Power Transfer System Using High-Quality Factor Superconducting Transmitting Coil for Biomedical Capsule Endoscopy. IEEE Trans. Appl. Supercond. 33, 1–5 (2023).


    Google Scholar
     

  • Miah, M. S., Jayathurathnage, P., Icheln, C., Haneda, K. & Tretyakov, S. High-Efficiency Wireless Power Transfer System for Capsule Endoscope. In 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT) 1–5 (IEEE, 2019).

  • Zhang, Z. L., Yuan, C. S., Gao, J. Y., Gao, C. & Zhou, J. S. Comparison of the Uniformity and Efficiency of the Square and Circular Helmholtz Coils for Wireless Power Transmission System. Prog. Electromagn. Res. Lett. 97, 131–139 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhuang, H., Wang, W., Zhao, K., Fei, Q. & Yan, G. Design and analysis of a wireless power transfer system for capsule robot using an optimised planar square spiral transmitting coil pair. Int. J. Med. Robot. 18, e2399 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, Y. et al. A novel wireless power transfer system with two parallel opposed coils for gastrointestinal capsule robot. Sens. Actuator A Phys. 321, 112413 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Basar, M. R., Ahmad, M. Y., Cho, J. & Ibrahim, F. An Improved Wearable Resonant Wireless Power Transfer System for Biomedical Capsule Endoscope. IEEE Trans. Ind. Electron. 65, 7772–7781 (2018).

    Article 

    Google Scholar
     

  • Khan, S. R., Pavuluri, S. K., Cummins, G. & Desmulliez, M. P. Y. Miniaturized 3-D Cross-Type Receiver for Wirelessly Powered Capsule Endoscopy. IEEE Trans. Microw. Theory Tech. 67, 1985–1993 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Khan, S. R. & Desmulliez, M. P. Y. Towards a Miniaturized 3D Receiver WPT System for Capsule Endoscopy. Micromachines 10, 545 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lien, G. S., Liu, C. W., Jiang, J. A., Chuang, C. L. & Teng, M. T. Magnetic Control System Targeted for Capsule Endoscopic Operations in the Stomach—Design, Fabrication, and in vitro and ex vivo Evaluations. IEEE Trans. Biomed. Eng. 59, 2068–2079 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Liao, Z. et al. Accuracy of Magnetically Controlled Capsule Endoscopy, Compared With Conventional Gastroscopy, in Detection of Gastric Diseases. Clin. Gastroenterol. Hepatol. 14, 1266–1273.e1261 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ciuti, G. et al. Robotic versus manual control in magnetic steering of an endoscopic capsule. Endoscopy 42, 148–152 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sliker, L. J., Ciuti, G., Rentschler, M. E. & Menciassi, A. Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribol. Int. 102, 472–484 (2016).

    Article 

    Google Scholar
     

  • Popek, K. M., Hermans, T. & Abbott, J. J. First demonstration of simultaneous localization and propulsion of a magnetic capsule in a lumen using a single rotating magnet. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 1154–1160 (IEEE, 2017).

  • Xu, Y., Li, K., Zhao, Z. & Meng, M. Q. H. On Reciprocally Rotating Magnetic Actuation of a Robotic Capsule in Unknown Tubular Environments. IEEE Trans. Med. Robot. Bionics 3, 919–927 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sliker, L., Ciuti, G., Rentschler, M. & Menciassi, A. Magnetically driven medical devices: a review. Expert Rev. Med. Devices 12, 737–752 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Guo, S., Fu, Q. & Guo, J. Characteristic evaluation of a magnetic-actuated microrobot in pipe with screw jet motion. Microsyst. Technol. 25, 719–727 (2019).

    Article 

    Google Scholar
     

  • Song, L. et al. Motion Control of Capsule Robot Based on Adaptive Magnetic Levitation Using Electromagnetic Coil. IEEE Trans. Autom. Sci. Eng., 20, 2720–2731 (2022).

  • Wang, F., Yang, J., Song, L. & Feng, L. Levitation control of capsule robot with 5-DOF based on arrayed Hall elements. In 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–6 (IEEE, 2022).

  • Rothwell, E. J. & Cloud, M. J. Electromagnetics (CRC Press, 2018).

  • Kummer, M. P. et al. OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).

    Article 

    Google Scholar
     

  • Lee, C. et al. Active Locomotive Intestinal Capsule Endoscope (ALICE) System: A Prospective Feasibility Study. IEEE ASME Trans. Mechatron. 20, 2067–2074 (2015). The saddle coil is used for the active motion drive of WCE, which ensures the tolerance of lying patients.

    Article 

    Google Scholar
     

  • Hoang, M. C. et al. Independent Electromagnetic Field Control for Practical Approach to Actively Locomotive Wireless Capsule Endoscope. IEEE Trans. Syst. Man Cybern. Syst. 51, 3040–3052 (2021).

    Article 

    Google Scholar
     

  • Arifin, F. & Saha, P. K. A Dual Band UWB antenna for WCE Systems. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting 1785-1786 (IEEE, 2019).

  • Islam, S. & Samad, M. F. Design and Analysis of a Miniaturized UWB Antenna for Wireless Capsule Endoscopy. In 2018 10th International Conference on Electrical and Computer Engineering (ICECE) 369–372 (IEEE, 2018).

  • Shang, J. & Yu, Y. An Ultrawideband Capsule Antenna for Biomedical Applications. IEEE Antennas Wirel. Propag. Lett. 18, 2548–2551 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jung, J., Li, M. & Kim, Y. T. Study on 13.56-MHz out-to-in body channel and its coexistence with human body communication for capsule endoscope. Microw. Opt. Technol. Lett. 63, 2819–2825 (2021).

    Article 

    Google Scholar
     

  • Jung, J., Shin, S., Li, M. & Kim, Y. T. Telemetry Transmission to Support Bidirectional Communication for Capsule Endoscope Using Human Body Communication. IEEE Microw. Wirel. Compon. Lett. 31, 905–908 (2021).

    Article 

    Google Scholar
     

  • Balkrishnan, R. The Importance of Medication Adherence in Improving Chronic-Disease Related Outcomes: What We Know and What We Need to Further Know. Med. Care 43, 517–520 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ibrahim, M. E. et al. Short Communication: Bioequivalence of Tenofovir and Emtricitabine After Coencapsulation with the Proteus Ingestible Sensor. AIDS Res. Hum. Retrovir. 34, 835–837 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belknap, R. et al. Feasibility of an Ingestible Sensor-Based System for Monitoring Adherence to Tuberculosis Therapy. PLoS ONE 8, e53373 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hafezi, H. et al. An Ingestible Sensor for Measuring Medication Adherence. IEEE Trans. Biomed. Eng. 62, 99–109 (2015). The galvanic IBC-based Proteus Discover system monitors patients’ daily medication intake.

    Article 
    PubMed 

    Google Scholar
     

  • Lamanna, L., Cataldi, P., Friuli, M., Demitri, C. & Caironi, M. Monitoring of Drug Release via Intra Body Communication with an Edible Pill. Adv. Mater. Technol. 8, 2200731 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Narmatha, P., Thangavel, V. & Vidhya, D. S. A Hybrid RF and Vision Aware Fusion Scheme for Multi-Sensor Wireless Capsule Endoscopic Localization. Wirel. Pers. Commun. 123, 1593–1624 (2022).

    Article 

    Google Scholar
     

  • Zhao, Q. & Meng, M. Q. H. Polyp detection in wireless capsule endoscopy images using novel color texture features. In 2011 9th World Congress on Intelligent Control and Automation 948–952 (IEEE, 2011).

  • Zhou, M., Bao, G., Geng, Y., Alkandari, B. & Li, X. Polyp detection and radius measurement in small intestine using video capsule endoscopy. In 2014 7th International Conference on Biomedical Engineering and Informatics 237–241 (IEEE, 2014).

  • Jain, S. et al. Detection of abnormality in wireless capsule endoscopy images using fractal features. Comput. Biol. Med. 127, 104094 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, Y., Li, B. & Meng, M. Q. H. WCE Abnormality Detection Based on Saliency and Adaptive Locality-Constrained Linear Coding. IEEE Trans. Autom. Sci. Eng. 14, 149–159 (2017).

    Article 

    Google Scholar
     

  • Namikawa, K. et al. Utilizing artificial intelligence in endoscopy: a clinician’s guide. Expert Rev. Gastroenterol. Hepatol. 14, 689–706 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. InAdvances in Neural Information Processing Systems, 25 (NIPS, 2012).

  • Hajabdollahi, M. et al. Segmentation of bleeding regions in wireless capsule endoscopy for detection of informative frames. Biomed. Signal Process. Control 53, 101565 (2019).

    Article 

    Google Scholar
     

  • Rustam, F. et al. Wireless Capsule Endoscopy Bleeding Images Classification Using CNN Based Model. IEEE Access 9, 33675–33688 (2021).

    Article 

    Google Scholar
     

  • Nadimi, E. S. et al. Application of deep learning for autonomous detection and localization of colorectal polyps in wireless colon capsule endoscopy. Comput. Electr. Eng. 81, 106531 (2020).

    Article 

    Google Scholar
     

  • LaLonde, R., Kandel, P., Spampinato, C., Wallace, M. B. & Bagci, U. Diagnosing Colorectal Polyps in the Wild with Capsule Networks. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) 1086–1090 (IEEE, 2020).

  • Alaskar, H., Hussain, A., Al-Aseem, N., Liatsis, P. & Al-Jumeily, D. Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images. Sensors 19, 1265 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sharma, A., Kumar, R. & Garg, P. Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images. Int. J. Med. Inf. 177, 105142 (2023).

    Article 

    Google Scholar
     

  • Son, D., Gilbert, H. & Sitti, M. Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy. Soft Robot 7, 10–21 (2019). Magnetic field-driven soft capsule robot with fine needle capillary biopsy.

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, M. C. et al. A Robotic Biopsy Endoscope with Magnetic 5-DOF Locomotion and a Retractable Biopsy Punch. Micromachines 11, 98 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang, M. C. et al. Untethered Robotic Motion and Rotating Blade Mechanism for Actively Locomotive Biopsy Capsule Endoscope. IEEE Access 7, 93364–93374 (2019).

    Article 

    Google Scholar
     

  • Leon-Rodriguez, H., Park, S. H. & Park, J. O. Testing and Evaluation of Foldable Biopsy Tools for Active Capsule Endoscope. In 2020 20th International Conference on Control, Automation and Systems (ICCAS) 473–479 (IEEE, 2020).

  • Tang, Q. et al. Current Sampling Methods for Gut Microbiota: A Call for More Precise Devices. Front. Cell. Infect. Microbiol. 10, 151 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Shokrollahi, P. et al. Blindly Controlled Magnetically Actuated Capsule for Noninvasive Sampling of the Gastrointestinal Microbiome. IEEE ASME Trans. Mechatron. 26, 2616–2628 (2021).

    Article 

    Google Scholar
     

  • Ding, Z. et al. Novel scheme for non-invasive gut bioinformation acquisition with a magnetically controlled sampling capsule endoscope. Gut 70, 2297–2306 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finocchiaro, M. et al. Design of a magnetic actuation system for a microbiota-collection ingestible capsule. In 2021 IEEE International Conference on Robotics and Automation (ICRA) 6905–6911 (IEEEE, 2021).

  • Park, S., Lee, H., Kim, D. I., Kee, H. & Park, S. Active Multiple-Sampling Capsule for Gut Microbiome. IEEE ASME Trans. Mechatron. 27, 4384–4395 (2022).

    Article 

    Google Scholar
     

  • Nguyen, K. T. et al. Medical Microrobot — A Drug Delivery Capsule Endoscope with Active Locomotion and Drug Release Mechanism: Proof of Concept. Int. J. Control Autom. Syst. 18, 65–75 (2020).

    Article 

    Google Scholar
     

  • Guo, S., Zhang, L. & Yang, Q. The Structural Design of a Magnetic Driven Wireless Capsule Robot for Drug Delivery. In 2019 IEEE International Conference on Mechatronics and Automation (ICMA) 844–849 (IEEE, 2019).

  • Guo, S., Hu, Y., Guo, J. & Fu, Q. Design of a Novel Drug-Delivery Capsule Robot. In 2021 IEEE International Conference on Mechatronics and Automation (ICMA) 938–943 (IEEE, 2021).

  • Hua, D. et al. Design, Fabrication, and Testing of a Novel Ferrofluid Soft Capsule Robot. IEEE ASME Trans. Mechatron. 27, 1403–1413 (2022).

    Article 

    Google Scholar
     

  • European Medicines Agency. Predictions for medical device development. https://www.ema.europa.eu/en/human-regulatory/overview/medical-devices#medical-devices-legislationsection (2021).

  • Boivin, M. L., Lochs, H. & Voderholzer, W. A. Does Passage of a Patency Capsule Indicate Small-Bowel Patency? A Prospective Clinical Trial? Endoscopy 37, 808–815 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. et al. Magneto-Responsive Polymeric Soft-Shell-Based Capsule Endoscopy for High-Performance Gastrointestinal Exploration via Morphological Shape Control. Adv. Intell. Syst. 6, 2300632 (2023).

    Article 

    Google Scholar
     

  • Park, S.-m, Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Traverso, G. et al. Microneedles for Drug Delivery via the Gastrointestinal Tract. J. Pharm. Sci. 104, 362–367 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basar, M. R., Ahmad, M. Y., Cho, J. & Ibrahim, F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens. Actuator A Phys. 249, 207–216 (2016).

    Article 
    CAS 

    Google Scholar
     

  • International Commission on Non-Ionizing Radiation Protection Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 118, 483–524 (2020).

    Article 

    Google Scholar
     

  • Bailey, W. H. et al. Synopsis of IEEE Std C95.1™-2019 “IEEE Standard for Safety Levels With Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. IEEE Access 7, 171346–171356 (2019).

    Article 

    Google Scholar
     

  • Faerber, J. et al. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna. IEEE Trans. Biomed. Circuits Syst. 12, 95–105 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Aran, K. et al. An oral microjet vaccination system elicits antibody production in rabbits. Sci. Transl. Med. 9, eaaf6413 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rappaport, T. S. et al. Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models. IEEE Trans. Antennas Propag. 65, 6213–6230 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gerke, S., Minssen, T. & Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare 295–336 (Academic Press, 2020).

  • Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2, 305–311 (2020).

    Article 

    Google Scholar
     

  • Tiwari, R. N. et al. Design and Validation of Loop-Based Ultraminiature Low-Profile Ultrawideband Capsule Antenna Inside Wistar Rat. IEEE Trans. Antennas Propag. 71, 8326–8331 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Lei, I. I. et al. Clinicians’ Guide to Artificial Intelligence in Colon Capsule Endoscopy—Technology Made Simple. Diagnostics 13, 1038 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hager, G. D. et al. Surgical and interventional robotics: part III [Tutorial]. IEEE Robot. Autom. Mag. 15, 84–93 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, A. J., Ramirez, O. A. D., Vega, V. P. & Oliver, J. P. O. Phantom omni haptic device: Kinematic and manipulability. In 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA) 193–198 (IEEE, 2009).

  • Ciuti, G. et al. A Comparative Evaluation of Control Interfaces for a Robotic-Aided Endoscopic Capsule Platform. IEEE Trans. Robot. 28, 534–538 (2012).

    Article 

    Google Scholar
     

  • Hwang, Y.-E. & Son, Y. D. Development of Head Mounted Display Interface System for Controlling Wireless Capsule Endoscope. J. Biomed. Eng. Res. 43, 417–423 (2022).


    Google Scholar
     

  • Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).

    Article 

    Google Scholar
     

  • Xu, Y., Li, K., Zhao, Z. & Meng, M. Q. H. A Novel System for Closed-Loop Simultaneous Magnetic Actuation and Localization of WCE Based on External Sensors and Rotating Actuation. IEEE Trans. Autom. Sci. Eng. 18, 1640–1652 (2021).

    Article 

    Google Scholar
     

  • Garbay, T. et al. Distilling the knowledge in CNN for WCE screening tool. In 2019 Conference on Design and Architectures for Signal and Image Processing (DASIP) 19–22 (IEEE, 2019).

  • Wang, Y., Yoo, S., Braun, J.-M. & Nadimi, E. S. A locally-processed light-weight deep neural network for detecting colorectal polyps in wireless capsule endoscopes. J. Real. Time Image Process. 18, 1183–1194 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W., Sui, J. & Wang, C. Magnetically Actuated Capsule Robots: A Review. IEEE Access 10, 88398–88420 (2022).

    Article 

    Google Scholar
     

  • Peker, F. & Ferhanoğlu, O. Multi-Capsule Endoscopy: An initial study on modeling and phantom experimentation of a magnetic capsule train. J. Med. Biol. Eng. 41, 315–321 (2021).

    Article 

    Google Scholar
     

  • Guo, S., Yang, Q., Bai, L. & Zhao, Y. Development of Multiple Capsule Robots in Pipe. Micromachines 9, 259 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hollander, J. E. & Carr, B. G. Virtually Perfect? Telemedicine for Covid-19. N. Engl. J. Med. 382, 1679–1681 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kantsevoy, S. V. et al. Endoscopic mucosal resection and endoscopic submucosal dissection. Gastrointest. Endosc. 68, 11–18 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Soto, F., Wang, J., Ahmed, R. & Demirci, U. Medical Micro/Nanorobots in Precision Medicine. Adv. Sci. 7, 2002203 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ramadi, K. B. et al. Bioinspired, ingestible electroceutical capsules for hunger-regulating hormone modulation. Sci. Robot. 8, eade9676 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Abramson, A. et al. Ingestible transiently anchoring electronics for microstimulation and conductive signaling. Sci. Adv. 6, eaaz0127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Magnetically driven capsules with multimodal response and multifunctionality for biomedical applications. Nat. Commun. 15, 1839 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. et al. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat. Commun. 15, 644 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, Y., Guo, J., Guo, S., Fu, Q. & Mo, B. A Magnetically Controlled Capsule Robot for Obesity Treatment with Intra-gastric Balloon. In 2022 IEEE International Conference on Mechatronics and Automation (ICMA) 1651–1656 (IEEE, 2022).

  • Leung, B. H. K. et al. A Therapeutic Wireless Capsule for Treatment of Gastrointestinal Haemorrhage by Balloon Tamponade Effect. IEEE Trans. Biomed. Eng. 64, 1106–1114 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bourbakis, N., Makrogiannis, S. & Kavraki, D. A neural network-based detection of bleeding in sequences of WCE images. In Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05) 324–327 (IEEE, 2005).

  • Carta, R. et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosens. Bioelectron. 25, 845–851 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Low-Power Ultrawideband Wireless Telemetry Transceiver for Medical Sensor Applications. IEEE Trans. Biomed. Eng. 58, 768–772 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Swain, P. et al. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointest. Endosc. 71, 1290–1293 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chu, J. N. & Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol. 19, 219–238 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button