Data Analytics

Subtype-specific alternative splicing events in breast cancer identified by large-scale data analysis


  • Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458(7239), 719–724 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esfahani, M. S. et al. Functional significance of U2AF1 S34F mutations in lung adenocarcinomas. Nat. Commun. https://doi.org/10.1038/s41467-019-13392-y (2019).

    Article 

    Google Scholar
     

  • Smith, M. A. et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 21(5), 640–650 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y., Cai, W., Hua, Y., Yang, X. & Zhou, J. The biological and clinical consequences of RNA splicing factor U2AF1 mutation in myeloid malignancies. Cancers (Basel) 14(18), 4406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Furney, S. J. et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discov. 3(10), 1122–1129 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, D. et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: Association with progression and fludarabine-refractoriness. Blood 118(26), 6904–6908 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell 34(2), 211-224.e6 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bigot, J. et al. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 12(3), 872 (2022).

    Article 

    Google Scholar
     

  • Bjørklund, S. S. et al. Widespread alternative exon usage in clinically distinct subtypes of Invasive Ductal Carcinoma. Sci. Rep. https://doi.org/10.1038/s41598-017-05537-0 (2017).

    Article 

    Google Scholar
     

  • Wang, Z., Wu, Q., Liu, Y., Li, Q. & Li, J. Self-harm prevalence and associated factors among street children in Mashhad, North East of Iran. Arch. Public Health 79, 139 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18(3), 175–196 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, N. & Liu, Z. Targeting alternative splicing in cancer immunotherapy. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2023.1232146 (2023).

    Article 

    Google Scholar
     

  • Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11(11), 3887 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. U. S. A. 99(19), 12293 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat. Cancer 2(5), 487 (2021).

    Article 
    CAS 

    Google Scholar
     

  • La, V. C. et al. Cancer mortality in Europe, 2000–2004, and an overview of trends since 1975. Cancer Mortal. Eur. 21, 1323–1360 (2010).


    Google Scholar
     

  • Prat, A. et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24(Suppl 2), S26-35 (2015).

    Article 

    Google Scholar
     

  • Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. (Pozn.) 19(1A), A68-77 (2015).


    Google Scholar
     

  • Wang, Z., Jensen, M. A. & Zenklusen, J. C. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol. Biol. 1418, 111–141 (2016).

    Article 

    Google Scholar
     

  • Schafer, S. et al. Alternative splicing signatures in RNA-seq Data: Percent spliced in (PSI). Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg1116s87 (2015).

    Article 

    Google Scholar
     

  • Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6(269), 1–1 (2013).

    Article 

    Google Scholar
     

  • Morales, J. et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604(7905), 310 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J., Lee, J. O., Lee, M. & Chung, Y. J. AS-CMC: A pan-cancer database of alternative splicing for molecular classification of cancer. Sci. Rep. 12(1), 1–9 (2022).

    Article 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: Making protein folding accessible to all. Nat. Methods 19(6), 679–682 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rigsby, R. E. & Parker, A. B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 44(5), 433–437 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Biological crystallography features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66(Pt 4), 486–501 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2), 400–416 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Anaya, J. OncoLnc: Linking TCGA survival data to mRNAs, miRNAs, and lncRNAs. PeerJ 2(2), e67 (2016).


    Google Scholar
     

  • Gubin, M. M., Artyomov, M. N., Mardis, E. R. & SchreiberTumor, R. D. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J. Clin. Invest. 125(9), 3413–3421 (2015).

    Article 

    Google Scholar
     

  • Türeci, Ö. et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22(8), 1885–1896 (2016).

    Article 

    Google Scholar
     

  • Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363(20), 1938–1948 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Da Silva, L., Clarke, C. & Lakhani, S. R. Demystifying basal-like breast carcinomas. J. Clin. Pathol. 60(12), 1328 (2007).

    Article 

    Google Scholar
     

  • Anders, C., Carey, L. A. & Carey, L. Understanding and treating triple-negative breast cancer. Oncology. 22(11), 1233–1243 (2008).


    Google Scholar
     

  • Picher, A. J. & Blanco, L. Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine. DNA Repair (Amst.) 6(12), 1749–1756 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Van Loon, B., Hübscher, U. & Maga, G. Living on the edge: DNA polymerase lambda between genome stability and mutagenesis. Chem. Res. Toxicol. 30(11), 1936–1941 (2017).

    Article 

    Google Scholar
     

  • Bache, K. G. et al. The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation. Mol. Biol Cell 15(9), 4337–4346 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279(34), 36059–36071 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zivony-Elboum, Y. et al. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J. Med. Genet. 49(7), 462–472 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hailstones, D. L. & Gunning, P. W. Characterization of Human Myosin Light Chains 1sa and 3nm: Implications for Isoform Evolution and Function. Mol. Cell Biol. 10(3), 1095–1104 (1990).

    CAS 

    Google Scholar
     

  • Lenzs, S., Lohseo, P., Seidel, U. & Arnoldll, H. H. The alkali light chains of human smooth and nonmuscle myosins are encoded by a single gene. Tissue-specific expression by alternative splicing pathways. J. Biol. Chem. 264(15), 9009–9015 (1989).

    Article 

    Google Scholar
     

  • Taylor, D. A., Sack, J. S., Maune, J. F., Beckingham, K. & Quiocho, F. A. Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. J. Biol. Chem. 266(32), 21375–21380 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Yap, K. L., Ames, J. B., Swindells, M. B. & Ikura, M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37(3), 499–507 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Ikura, M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 21(1), 14–17 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Sciarrillo, R. et al. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist. Updates 53, 100728 (2020).

    Article 

    Google Scholar
     

  • Veuger, M. J. T., Heemskerk, M. H. M., Willy Honders, M., Willemze, R. & Barge, R. M. Y. Functional role of alternatively spliced deoxycytidine kinase in sensitivity to cytarabine of acute myeloid leukemic cells. Blood 99(4), 1373–1380 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jahn, S. C. et al. GSTZ1 expression and chloride concentrations modulate sensitivity of cancer cells to dichloroacetate. Biochim. Biophys. Acta 1860(6), 1202 (2016).

    Article 
    CAS 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button