Robotics

Untethered soft actuators for soft standalone robotics


  • Hawkes, E. W., Blumenschein, L. H., Greer, J. D. & Okamura, A. M. A soft robot that navigates its environment through growth. Sci. Robot. 2, eaan3028 (2017).

    PubMed 

    Google Scholar
     

  • Justus, K. B. et al. A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019).

    PubMed 

    Google Scholar
     

  • Hao, Y., Gao, J., Lv, Y. & Liu, J. Low melting point alloys enabled stiffness tunable advanced materials. Adv. Funct. Mater. 32, 2201942 (2022).

    CAS 

    Google Scholar
     

  • Gao, M., Meng, Y., Shen, C. & Pei, Q. Stiffness variable polymers comprising phase‐changing side‐chains: material syntheses and application explorations. Adv. Mater. 34, 2109798 (2022).

    CAS 

    Google Scholar
     

  • Tetsuka, H., Pirrami, L., Wang, T., Demarchi, D. & Shin, S. R. Wirelessly powered 3D printed hierarchical biohybrid robots with multiscale mechanical properties. Adv. Funct. Mater. 32, 2202674 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nardekar, S. S. & Kim, S. J. Untethered magnetic soft robot with ultra‐flexible wirelessly rechargeable micro‐supercapacitor as an oboard power source. Adv. Sci. 10, 2303918 (2023).

    CAS 

    Google Scholar
     

  • Li, Y. et al. Multi‐degree‐of‐freedom robots powered and controlled by microwaves. Adv. Sci. 9, 2203305 (2022).

    CAS 

    Google Scholar
     

  • Iyer, V., Najafi, A., James, J., Fuller, S. & Gollakota, S. Wireless steerable vision for live insects and insect-scale robots. Sci. Robot. 5, eabb0839 (2020).

    PubMed 

    Google Scholar
     

  • Yang, H. et al. Multifunctional metallic backbones for origami robotics with strain sensing and wireless communication capabilities. Sci. Robot. 4, eaax7020 (2019).

    PubMed 

    Google Scholar
     

  • Ozaki, T., Ohta, N., Jimbo, T. & Hamaguchi, K. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021).


    Google Scholar
     

  • Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Atab, N. et al. Soft actuators for soft robotic applications: a review. Adv. Intell. Syst. 2, 2000128 (2020).


    Google Scholar
     

  • Guo, Y., Liu, L., Liu, Y. & Leng, J. Review of dielectric elastomer actuators and their applications in soft robots. Adv. Intell. Syst. 3, 2000282 (2021).


    Google Scholar
     

  • Rich, S. I., Wood, R. J. & Majidi, C. Untethered soft robotics. Nat. Electron. 1, 102–112 (2018).


    Google Scholar
     

  • Kim, H. et al. Shape morphing smart 3D actuator materials for micro soft robot. Mater. Today 41, 243–269 (2020).

    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Physically intelligent autonomous soft robotic maze escaper. Sci. Adv. 9, eadi3254 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng, C. S. X. et al. Locomotion of miniature soft robots. Adv. Mater. 33, 2003558 (2021).

    CAS 

    Google Scholar
     

  • Li, G. et al. Self-powered soft robot in the mariana trench. Nature 591, 66–71 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Runciman, M., Darzi, A. & Mylonas, G. P. Soft robotics in minimally invasive surgery. Soft Robot. 6, 423–443 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S. et al. A dynamic electrically driven soft valve for control of soft hydraulic actuators. Proc. Natl Acad. Sci. 118, e2103198118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, L., Dong, L., Wang, D., Ge, Q. & Gu, G. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sens. Actuators A: Phys. 273, 285–292 (2018).

    CAS 

    Google Scholar
     

  • Li, H. et al. High-force soft pneumatic actuators based on novel casting method for robotic applications. Sens. Actuators A: Phys. 306, 111957 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Bira, N., Mengüç, Y. & Davidson, J. R. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2020).

  • Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018). This study presents muscle-mimetic soft actuators that harness electrostatic and hydraulic mechanism using liquid dielectric material.

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell, S. K. et al. An easy‐to‐implement toolkit to create versatile and high‐performance HASEL actuators for untethered soft robots. Adv. Sci. 6, 1900178 (2019).


    Google Scholar
     

  • Zhang, Y. F. et al. Miniature pneumatic actuators for soft robots by high‐resolution multimaterial 3D printing. Adv. Mater. Technol. 4, 1900427 (2019).


    Google Scholar
     

  • Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).

    CAS 

    Google Scholar
     

  • Bell, M. A., Gorissen, B., Bertoldi, K., Weaver, J. C. & Wood, R. J. A modular and self‐contained fluidic engine for soft actuators. Adv. Intell. Syst. 4, 2100094 (2022).


    Google Scholar
     

  • Zatopa, A., Walker, S. & Menguc, Y. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots. Soft Robot. 5, 258–271 (2018).

    PubMed 

    Google Scholar
     

  • Lin, Y., Xu, Y.-X. & Juang, J.-Y. Single-actuator soft robot for in-pipe crawling. Soft Robot. 10, 174–186 (2023).

    PubMed 

    Google Scholar
     

  • Chee, P. S., Minjal, M. N., Leow, P. L. & Ali, M. S. M. Wireless powered thermo-pneumatic micropump using frequency-controlled heater. Sens. Actuators A: Phys. 233, 1–8 (2015).

    CAS 

    Google Scholar
     

  • Han, J. et al. Untethered soft actuators by liquid–vapor phase transition: remote and programmable actuation. Adv. Intell. Syst. 1, 1900109 (2019).


    Google Scholar
     

  • Byun, J. et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Sci. Robot. 6, eabe0637 (2021).

    PubMed 

    Google Scholar
     

  • Yoon, Y. et al. Bioinspired untethered soft robot with pumpless phase change soft actuators by bidirectional thermoelectrics. Chem. Eng. J. 451, 138794 (2023).

    CAS 

    Google Scholar
     

  • Lee, J. et al. Bioinspired soft robotic fish for wireless underwater control of gliding locomotion. Adv. Intell. Syst. 4, 2100271 (2022).


    Google Scholar
     

  • Kang, B., Lee, Y., Piao, T., Ding, Z. & Wang, W. D. Robotic soft swim bladder using liquid–vapor phase transition. Mater. Horiz. 8, 939–947 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, M. et al. Miniature coiled artificial muscle for wireless soft medical devices. Sci. Adv. 8, eabm5616 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirvakili, S. M., Sim, D., Hunter, I. W. & Langer, R. Actuation of untethered pneumatic artificial muscles and soft robots using magnetically induced liquid-to-gas phase transitions. Sci. Robot. 5, eaaz4239 (2020).

    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Wireless miniature magnetic phase‐change soft actuators. Adv. Mater. 34, 2204185 (2022).

    CAS 

    Google Scholar
     

  • Diteesawat, R. S., Helps, T., Taghavi, M. & Rossiter, J. Electro-pneumatic pumps for soft robotics. Sci. Robot. 6, eabc3721 (2021).

    PubMed 

    Google Scholar
     

  • Matia, Y., An, H. S., Shepherd, R. F. & Lazarus, N. Magnetohydrodynamic levitation for high-performance flexible pumps. Proc. Natl Acad. Sci. 119, e2203116119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, S., Nunez, C. M., Souri, M. & Wood, R. J. A compact DEA-based soft peristaltic pump for power and control of fluidic robots. Sci. Robot. 8, eadd4649 (2023).

    PubMed 

    Google Scholar
     

  • Feng, M., Yang, D., Majidi, C. & Gu, G. High‐speed and low‐energy actuation for pneumatic soft robots with internal exhaust air recirculation. Adv. Intell. Syst. 5, 2200257 (2023).


    Google Scholar
     

  • Tse, Y. A., Wong, K. W., Yang, Y. & Wang, M. Y. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2020).

  • Sun, J., Zhou, D., Deng, J. & Liu, Y. Development of a high flow rate soft pump driven by intersected twisted artificial muscles units. IEEE Trans. Ind. Electron. 70, 7153–7162 (2022).


    Google Scholar
     

  • Zhang, W. H., Qin, L., Wang, J. Y. & Xu, W. Design of squeezing-tube-driven pump for soft pneumatic robotics based on spiral spring winding. Appl. Phys. Letters 122, 093702 (2023).

  • Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516–519 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, W. et al. Customizing a self-healing soft pump for robot. Nat. Commun. 12, 2247 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi, J., Gao, F., Sun, G., Yeo, J. C. & Lim, C. T. HaptGlove—untethered pneumatic glove for multimode haptic feedback in reality–virtuality continuum. Adv. Sci. 10, 2301044 (2023).

  • Lin, D., Yang, F., Gong, D. & Li, R. Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat. Commun. 14, 163 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Y. et al. 4D printing light-driven soft actuators based on liquid-vapor phase transition composites with inherent sensing capability. Chem. Eng. J. 454, 140271 (2023).

    CAS 

    Google Scholar
     

  • Fischer, P. & Ghosh, A. Magnetically actuated propulsion at low reynolds numbers: towards nanoscale control. Nanoscale 3, 557–563 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brauer, J. R. Magnetic actuators and sensors 400,1-21 (John Wiley & Sons, 2006).

  • Nguyen, V. Q., Ahmed, A. S. & Ramanujan, R. V. Morphing soft magnetic composites. Adv. Mater. 24, 4041–4054 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Sitti, M. & Wiersma, D. S. Pros and cons: magnetic versus optical microrobots. Adv. Mater. 32, 1906766 (2020).

    CAS 

    Google Scholar
     

  • Singamaneni, S., Bliznyuk, V. N., Binek, C. & Tsymbal, E. Y. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819–16845 (2011).

    CAS 

    Google Scholar
     

  • Ahn, C. H. & Allen, M. G. In Proceedings IEEE Micro Electro Mechanical Systems. 1995 408 (IEEE).

  • Howe, D. Magnetic actuators. Sens. Actuators A: Phys. 81, 268–274 (2000).

    CAS 

    Google Scholar
     

  • Joyee, E. B. & Pan, Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robot. 6, 333–345 (2019).

    PubMed 

    Google Scholar
     

  • Kim, S., Hashi, S. & Ishiyama, K. Magnetic actuation based snake-like mechanism and locomotion driven by rotating magnetic field. IEEE Trans. Magn. 47, 3244–3247 (2011).

    ADS 

    Google Scholar
     

  • Peng, L. et al. Slug-inspired magnetic soft millirobot fully integrated with triboelectric nanogenerator for on‐board sensing and self‐powered charging. Nano energy 99, 107367 (2022).

    CAS 

    Google Scholar
     

  • Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al Khatib, E. et al. Magnetically actuated simple millirobots for complex navigation and modular assembly. IEEE Robot. Autom. Lett. 5, 2958–2965 (2020).


    Google Scholar
     

  • Magdanz, V. et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci. Adv. 6, eaba5855 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, D. et al. Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy 89, 106424 (2021).

    CAS 

    Google Scholar
     

  • Mao, G. et al. Ultrafast small-scale soft electromagnetic robots. Nat. Commun. 13, 4456 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. & Zhao, X. Magnetic soft materials and robots. Chem. Rev. 122, 5317–5364 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. Reprogrammable, magnetically controlled polymeric nanocomposite actuators. Mater. Horiz. 5, 861–867 (2018).

    CAS 

    Google Scholar
     

  • Cao, X. et al. 3D printing magnetic actuators for biomimetic applications. ACS Appl. Mater. Interfaces 13, 30127–30136 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Paknahad, A. A. & Tahmasebipour, M. An electromagnetic micro-actuator with PDMS-Fe3O4 nanocomposite magnetic membrane. Microelectron. Eng. 216, 111031 (2019).


    Google Scholar
     

  • Han, B. et al. Reprogrammable soft robot actuation by synergistic magnetic and light fields. Adv. Funct. Mater. 32, 2110997 (2022).

    CAS 

    Google Scholar
     

  • Song, H. et al. Reprogrammable ferromagnetic domains for reconfigurable soft magnetic actuators. Nano Lett. 20, 5185–5192 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahato, M. et al. A dual‐responsive magnetoactive and electro–ionic soft actuator derived from a nickel‐based metal–organic framework. Adv. Mater. 34, 2203613 (2022).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Responsive magnetic nanocomposites for intelligent shape-morphing microrobots. ACS nano 17, 8899–8917 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H., Mayorga-Martinez, C. C., Pané, S., Zhang, L. & Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 121, 4999–5041 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quashie, D. et al. Magnetic bio-hybrid micro actuators. Nanoscale 14, 4364–4379 (2022).

    PubMed 

    Google Scholar
     

  • Gao, Y., Wei, F., Chao, Y. & Yao, L. Bioinspired soft microrobots actuated by magnetic field. Biomed. Microdevices 23, 1–19 (2021).


    Google Scholar
     

  • Abdelaziz, M. & Habib, M. in 2020 21st International Conference on Research and Education in Mechatronics (REM). 1-6 (IEEE).

  • Gao, W. et al. Cargo‐towing fuel‐free magnetic nanoswimmers for targeted drug delivery. small 8, 460–467 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Tang, J. et al. Super‐soft and super‐elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew. Chem. Int. Ed. 59, 2490–2495 (2020).

    CAS 

    Google Scholar
     

  • Ju, Y. et al. Reconfigurable magnetic soft robots with multimodal locomotion. Nano Energy 87, 106169 (2021).

    CAS 

    Google Scholar
     

  • Huang, X. et al. Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4, 1800540 (2019).

    ADS 

    Google Scholar
     

  • Ishida, M. et al. Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot. IEEE Robot. Autom. Lett. 4, 4163–4169 (2019).


    Google Scholar
     

  • Xie, H. et al. Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019).

    PubMed 

    Google Scholar
     

  • Ha, M. et al. Reconfigurable magnetic origami actuators with on‐board sensing for guided assembly. Adv. Mater. 33, 2008751 (2021).

    CAS 

    Google Scholar
     

  • Wu, Y. et al. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci. Adv. 8, eabo6021 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Reconfigurable magnetic liquid metal robot for high-performance droplet manipulation. Nano Lett. 22, 2923–2933 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guitron, S., Guha, A., Li, S. & Rus, D. 2017 IEEE International Conference on Robotics and Automation (ICRA) 4807–4813 (IEEE, 2017).

  • Behrens, M. R. & Ruder, W. C. Smart magnetic microrobots learn to swim with deep reinforcement learning. Adv. Intell. Syst. 4, 2200023 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Y. et al. A fast autonomous healing magnetic elastomer for instantly recoverable, modularly programmable, and thermorecyclable soft robots. Adv. Funct. Mater. 31, 2101825 (2021).

    CAS 

    Google Scholar
     

  • Lu, H., Hong, Y., Yang, Y., Yang, Z. & Shen, Y. Battery‐less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Adv. Sci. 7, 2000069 (2020).

    CAS 

    Google Scholar
     

  • Dong, Y. et al. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci. Adv. 8, eabn8932 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebrahimi, N. et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 31, 2005137 (2021).

    CAS 

    Google Scholar
     

  • Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 596 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ula, S. W. et al. Liquid crystal elastomers: an introduction and review of emerging technologies. Liq. Cryst. Rev. 6, 78–107 (2018).

    CAS 

    Google Scholar
     

  • Küpfer, J. & Finkelmann, H. Nematic liquid single crystal elastomers. Die Makromol. Chem., Rapid Commun. 12, 717–726 (1991).


    Google Scholar
     

  • Fu, C., Xia, Z., Hurren, C., Nilghaz, A. & Wang, X. Textiles in soft robots: current progress and future trends. Biosens. Bioelectron. 196, 113690 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Xing, H., Li, J., Shi, Y., Guo, J. & Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. interfaces 8, 9440–9445 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhai, F. et al. 4D-printed untethered self-propelling soft robot with tactile perception: rolling, racing, and exploring. Matter 4, 3313–3326 (2021).

    CAS 

    Google Scholar
     

  • Wu, S., Hong, Y., Zhao, Y., Yin, J. & Zhu, Y. Caterpillar-inspired soft crawling robot with distributed programmable thermal actuation. Sci. Adv. 9, eadf8014 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotikian, A. et al. Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci. Robot. 4, eaax7044 (2019).

    PubMed 

    Google Scholar
     

  • He, Q. et al. Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci. Adv. 5, eaax5746 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, H., Li, C. & Huang, X. Actuators based on liquid crystalline elastomer materials. Nanoscale 5, 5225–5240 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, T. H. et al. Biomimetic thermal-sensitive multi-transform actuator. Sci. Rep. 9, 7905 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H.-X. et al. Thermal-responsive hydrogel actuators with photo-programmable shapes and actuating trajectories. ACS Appl. Mater. Interfaces 14, 51244–51252 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Wei, W. et al. Recent advances and perspectives of shape memory polymer fibers. Er Poly. J. 175, 111385 (2022).

  • Lendlein, A. & Gould, O. E. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat. Rev. Mater. 4, 116–133 (2019).

    ADS 

    Google Scholar
     

  • Yang, Y. et al. Enabling the sunlight driven response of thermally induced shape memory polymers by rewritable CH 3 NH 3 PbI 3 perovskite coating. J. Mater. Chem. A 5, 7285–7290 (2017).

    CAS 

    Google Scholar
     

  • Chen, S., Zhang, Q. & Feng, J. 3D printing of tunable shape memory polymer blends. J. Mater. Chem. C. 5, 8361–8365 (2017).

    CAS 

    Google Scholar
     

  • Qian, S., Yao, S., Wang, Y., Yuan, L. & Yu, J. Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator. Appl. Energy 322, 119462 (2022).

    CAS 

    Google Scholar
     

  • Knick, C. R., Smith, G. L., Morris, C. J. & Bruck, H. A. Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators. Sens. Actuators A: Phys. 291, 48–57 (2019).

    CAS 

    Google Scholar
     

  • Sun, J., Tighe, B., Liu, Y. & Zhao, J. Twisted-and-coiled actuators with free strokes enable soft robots with programmable motions. Soft Robot. 8, 213–225 (2021).

    PubMed 

    Google Scholar
     

  • He, Q., Wang, Z., Wang, Y., Song, Z. & Cai, S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl. Mater. interfaces 12, 35464–35474 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Pan, M. et al. Soft actuators and robotic devices for rehabilitation and assistance. Adv. Intell. Syst. 4, 2100140 (2022).


    Google Scholar
     

  • Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Q. et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Sci. Rep. 6, 24462 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, S. & Ghosh, T. K. Bioinspired structures for soft actuators. Adv. Mater. Technol. 7, 2101521 (2022).


    Google Scholar
     

  • Yang, Y., Wu, Y., Li, C., Yang, X. & Chen, W. Flexible actuators for soft robotics. Adv. Intell. Syst. 2, 1900077 (2020).


    Google Scholar
     

  • Yamada, M. et al. Photomobile polymer materials: towards light‐driven plastic motors. Angew. Chem. 120, 5064–5066 (2008).

    ADS 

    Google Scholar
     

  • Kumar, K. et al. A chaotic self-oscillating sunlight-driven polymer actuator. Nat. Commun. 7, 11975 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. Bioinspired phototropic MXene‐reinforced soft tubular actuators for omnidirectional light‐tracking and adaptive photovoltaics. Adv. Funct. Mater. 32, 2201884 (2022).

    CAS 

    Google Scholar
     

  • Hu, Z., Zhang, Y., Jiang, H. & Lv, J.-A. Bioinspired helical-artificial fibrous muscle structured tubular soft actuators. Sci. Adv. 9, eadh3350 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wani, O. M., Zeng, H. & Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Light-driven dandelion-inspired microfliers. Nat. Commun. 14, 3036 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robotics 6, eabi9704 (2021).

  • Wang, J., Zhao, T., Fan, Y., Wu, H. & Lv, J. A. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high‐speed soft actuators. Adv. Funct. Mater. 33, 2209798 (2023).

    CAS 

    Google Scholar
     

  • Kim, I. H. et al. Human-muscle-inspired single fibre actuator with reversible percolation. Nat. Nanotechnol. 17, 1198–1205 (2022).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ionov, L. Biomimetic hydrogel‐based actuating systems. Adv. Funct. Mater. 23, 4555–4570 (2013).

    CAS 

    Google Scholar
     

  • Dawson, C., Vincent, J. F. & Rocca, A.-M. How pine cones open. Nature 390, 668–668 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Fratzl, P. & Barth, F. G. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Duigou, A., Chabaud, G., Scarpa, F. & Castro, M. Bioinspired electro‐thermo‐hygro reversible shape‐changing materials by 4D printing. Adv. Funct. Mater. 29, 1903280 (2019).


    Google Scholar
     

  • Shin, B. et al. Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3, eaar2629 (2018).

    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nat. Mater. 21, 1357–1365 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aziz, S. et al. Plant‐like tropisms in artificial muscles. Adv. Mater. 35, e2212046 (2023).

  • Zhao, Z. et al. Actuation and locomotion driven by moisture in paper made with natural pollen. Proc. Natl Acad. Sci. 117, 8711–8718 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z., An, Y., He, Y., Lian, X. & Wang, Y. A programmable actuator as synthetic earthworm. Adv. Mater. 35, 2303805 (2023).

  • Li, J., Mou, L., Liu, Z., Zhou, X. & Chen, Y. Oscillating light engine realized by photothermal solvent evaporation. Nat. Commun. 13, 5621 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Bioinspired multi‐stimuli responsive actuators with synergistic color‐and morphing‐change abilities. Adv. Sci. 8, 2101295 (2021).


    Google Scholar
     

  • Wu, Y., Dong, X., Kim, J. K., Wang, C. & Sitti, M. Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Sci. Adv. 8, eabn3431 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, H., Lee, J., Kim, S., Moon, H. & Hong, S. Site-specific fabrication of a melanin-like pigment through spatially confined progressive assembly on an initiator-loaded template. Nat. Commun. 14, 3432 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. Self-contained soft electrofluidic actuators. Sci. Adv. 7, eabf8080 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha, J. H. et al. Electro-responsive hydrogel-based microfluidic actuator platform for photothermal therapy. Lab a Chip 20, 3354–3364 (2020).

    CAS 

    Google Scholar
     

  • Ji, X. et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, eaaz6451 (2019).

    PubMed 

    Google Scholar
     

  • Rumley, E. H. et al. Biodegradable electrohydraulic actuators for sustainable soft robots. Sci. Adv. 9, eadf5551 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, W. et al. Origami-based integration of robots that sense, decide, and respond. Nat. Commun. 14, 1553 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, Y., Hong, Y., Zhao, Y., Li, Y. & Yin, J. Snapping for high-speed and high-efficient butterfly stroke–like soft swimmer. Sci. Adv. 8, eadd3788 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ankit et al. Soft actuator materials for electrically driven haptic interfaces. Adv. Intell. Syst. 4, 2100061 (2022).


    Google Scholar
     

  • Ni, D. et al. Polymer interdigitated pillar electrostatic (PIPE) actuators. Microsyst. nanoengineering 8, 18 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, C., Faul, C. F., Taghavi, M. & Rossiter, J. Electric field‐driven dielectrophoretic elastomer actuators. Adv. Funct. Mater. 33, 2208943 (2023).

    CAS 

    Google Scholar
     

  • Zheng, Z. et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 12, 411 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, J., Wang, S., Yu, Q. & Zhu, Y. Swimming performance of the frog-inspired soft robot. Soft Robot. 7, 615–626 (2020).

    PubMed 

    Google Scholar
     

  • Wang, D. et al. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 14, 5067 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Electrostatic footpads enable agile insect-scale soft robots with trajectory control. Sci. Robot. 6, eabe7906 (2021).

    PubMed 

    Google Scholar
     

  • Won, D. et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, C. et al. 3D stretchable and self-encapsulated multimaterial triboelectric fibers. Sci. Adv. 8, eabo0869 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Z. et al. Artificial Intelligence of Things (AIoT) enabled virtual shop applications using self‐powered sensor enhanced soft robotic manipulator. Adv. Sci. 8, 2100230 (2021).


    Google Scholar
     

  • Xue, P. et al. Highly conductive MXene/PEDOT: PSS‐integrated poly (N‐Isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv. Funct. Mater. 33, 2214867 (2023).

  • Lo, C.-Y. et al. Highly stretchable self-sensing actuator based on conductive photothermally-responsive hydrogel. Mater. Today 50, 35–43 (2021).

    CAS 

    Google Scholar
     

  • Dong, L. et al. Artificial neuromuscular fibers by multilayered coaxial integration with dynamic adaption. Sci. Adv. 8, eabq7703 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. Breathable metal–organic framework enhanced humidity-responsive nanofiber actuator with autonomous triboelectric perceptivity. ACS nano 17, 17920–17930 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, H. et al. Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proc. Natl Acad. Sci. 117, 25352–25359 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z. et al. High‐stretchability, ultralow‐hysteresis conductingpolymer hydrogel strain sensors for soft machines. Adv. Mater. 34, 2203650 (2022).

    CAS 

    Google Scholar
     

  • Meng, X. et al. Hysteresis‐free nanoparticle‐reinforced hydrogels. Adv. Mater. 34, 2108243 (2022).

    CAS 

    Google Scholar
     

  • Su, X. et al. A highly conducting polymer for self‐healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis‐free soft tactile sensors. Adv. Mater. 34, 2200682 (2022).

    CAS 

    Google Scholar
     

  • Kim, K. K. et al. A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shu, S. et al. Machine‐learning assisted electronic skins capable of proprioception and exteroception in soft robotics. Adv. Mater. 35, 2211385 (2023).

  • Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6, eaay2627 (2021).

    PubMed 

    Google Scholar
     

  • Kim, J. et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science 365, 668–672 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmitz, D. G. et al. Modulation of achilles tendon force with load carriage and exosuit assistance. Sci. Robot. 7, eabq1514 (2022).

    PubMed 

    Google Scholar
     

  • Nuckols, R. W. et al. Individualization of exosuit assistance based on measured muscle dynamics during versatile walking. Sci. Robot. 6, eabj1362 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgarakis, A.-M., Xiloyannis, M., Wolf, P. & Riener, R. A textile exomuscle that assists the shoulder during functional movements for everyday life. Nat. Mach. Intell. 4, 574–582 (2022).


    Google Scholar
     

  • Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).

    PubMed 

    Google Scholar
     

  • Gu, H. et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14, 1263 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, S. et al. High-throughput fabrication of soft magneto-origami machines. Nat. Commun. 13, 4177 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sitti, M. Physical intelligence as a new paradigm. Extrem. Mech. Lett. 46, 101340 (2021).


    Google Scholar
     

  • Zhang, J., Guo, Y., Hu, W. & Sitti, M. Wirelessly actuated thermo‐and magneto‐responsive soft bimorph materials with programmable shape‐morphing. Adv. Mater. 33, 2100336 (2021).

    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Twisting for soft intelligent autonomous robot in unstructured environments. Proc. Natl Acad. Sci. 119, e2200265119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, M. et al. Light‐fueled polymer film capable of directional crawling, friction‐controlled climbing, and self‐sustained motion on a human hair. Adv. Sci. 9, 2103090 (2022).

    CAS 

    Google Scholar
     

  • Cabanach, P. et al. Zwitterionic 3D‐printed non‐immunogenic stealth microrobots. Adv. Mater. 32, 2003013 (2020).

    CAS 

    Google Scholar
     

  • Sridhar, V. et al. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci. Robot. 7, eabm1421 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahsavan, H. et al. Bioinspired underwater locomotion of light-driven liquid crystal gels. Proc. Natl Acad. Sci. 117, 5125–5133 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, L. et al. A humidity-powered soft robot with fast rolling locomotion. Research 9832901 https://doi.org/10.34133/2022/9832901 (2022).

  • Choi, M., Shin, B. & Kim, H.-Y. Hygromachines: Humidity-powered wheels, seesaws, and vehicles. Soft Robotics https://doi.org/10.1089/soro.2022.0218 (2023).

  • Ha, J. et al. Hygroresponsive coiling of seed awns and soft actuators. Extrem. Mech. Lett. 38, 100746 (2020).


    Google Scholar
     

  • Wang, R., Han, L., Wu, C., Dong, Y. & Zhao, X. Localizable, identifiable, and perceptive untethered light-driven soft crawling robot. ACS Appl. Mater. Interfaces 14, 6138–6147 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Electrodeposited superhydrophilic‐superhydrophobic composites for untethered multi‐stimuli‐responsive soft millirobots. Adv. Sci. 10, 2302409 (2023).

  • Johnson, B. K. et al. Identification and control of a nonlinear soft actuator and sensor system. IEEE Robot. Autom. Lett. 5, 3783–3790 (2020).


    Google Scholar
     

  • Lalegani Dezaki, M. & Bodaghi, M. Sustainable 4D printing of magneto-electroactive shape memory polymer composites. Int. J. Adv. Manuf. Technol. 126, 35–48 (2023).


    Google Scholar
     

  • Dezaki, M. L. & Bodaghi, M. Shape memory meta-laminar jamming actuators fabricated by 4D printing. Soft Matter 19, 2186–2203 (2023).

    ADS 

    Google Scholar
     

  • Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source

    Related Articles

    Back to top button